/e’ 4305285

LEVEL="

AD

TECHNICAL REPORT ARBRL-TR-02290

FINLIE: A FORTRAN PROGRAM FOR FITTING
ORDINARY DIFFERENTIAL EQUATIONS WITH
NONLINEAR PARAMETERS TO DATA

James W, Bradley

DTIC

ELECTE
February 1981 s APR 2 2 1931D

3 US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public relasse; distribution unlimited.

81 4 2 121

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as
an official Departient of the Army position, unless
so designated by other authorized documents.

The use of trade nuamgd or manufacturere ' names in this report
dovy ot xonstitutd indoreement of any commercial product.

fadita bl siihs et v 'mmmwmm.m.mmm S e e

UNCLASSIELED
SECURITY CLASSIFICATION OF THIS PAGE (When Datn Entared)

INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
|. R!FQ“‘ NUMD!“ 2. GOVY ACCRSSION NO.J 3. R[CIPIENT__'. CHTALOG NUMBER
.))
TECHNICAL REPORT ARBRL-TR-02290 | £L/0— f17 /81 <5 ¢
4. TITLE (and Subtizle) . . TYPE OF REPORT & PIRIQD CHOVERED

FINLIE: A FORTRAN Program for Fitting

Ordinary Differantial Equations With Final

§. PERFORMING ORG. REPORT NUMBER

*f;ﬁf Nonlinear Parameters to Data
B 7. AUTHOR(e) T CONTRACT OR GRAANT HUMBER(S)
f_‘ James W. Bradley
e . 9. PERFORMING ORGANIZATION NAME AND ADDRESS 0. ::ggQA;‘OERLKESSIF‘TT-N‘LQ‘O;EE&ST. TASK
U.S. Army Ballistic Research Lahoratory
ATTN: DRDAR-BLL 1L161102AH43
Aberdeen Proving Ground, MD 21005
11. CONTROLLING OFFICE NAME AND ADOCRESS 12. REPORT DATE
U.S., Army Armament Research & Development Command FEBRUARY 1981
W U.S. Army Ballistic Research Laboratory). RUMBER OF PAGES
F. - ATTN: DRDAR-BL 95
SAN : o 21008
. MONITORING AGENGCY NAM ORESS(/! dilisrent from Controlling Oftice) | 16. SECURITY CLASS. (of thia report)
S Unclassified

184, DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, /1 differant from Report)

B 8. SUPPLEMENTARY NOTER

19, KEY WORDE (Continue on reveras side 1! necesssry and identity by block number)

L Nonlinear Least Squares Parameter Optimization
i Chapman-Kirk Fitting Technique FORTRAN Least Squares Program
! Marquardt Algorithm Fitting Di¢fferential Equations
Curve Fitting Differential Corrections

20. ARSTRACT (Corrtinue an reveras sidy ¥ nusoesasy ana tdentity by dlock number) (le)

This paper presents aad documents a FORTRAN program FINLIE for fitting a svstem
of ordinary d:ifferential equations (or a system of algebraic .r trunscendental
' . equations) t> observed data. FINLIE determines those values of the possibly
Hy y nonlinear system parameters and initial conditions that yield a best fit--in

. the least squares sense--of the solution curves to measurements of one or nor-s
of the dependent variables. The basic fitting technique is Chapman-Kirk, with
the Marquardt algorithm aiding convergence. The data from more than

(Continuedl

. 4 F ORM
' DD\ jaun WMI3 xormion oF 1 novesis ossoLETE UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGK(When Data Entered)

20. ABSTRACT {(Continued):

one experiment can be handled simultaneously to obtain one common set of
parameters and a set of initial conditions for each experiment. For each

computer run, the value of any parameter or initial condition can be held
fixed or adjusted by FINLIE.

UNCLASSIFIED
SECURITY CLASBIFICATION OF THIS ®AGE(When Dara Eniered)

II.

III.

Iv.

TABLE OF CONTENTS

LISTOF TABLES ¢« . « .« .
INTRODUCTION . & & & v v v o 0 v o o o o o s
INSIDE FINLIE: WHAT FINLIE DOES FOR THE USER

Condition for a Minimum y

Influence Coefficients ,

Influence Equations for System (1) .
Influence Equations for System (2)
An Overview

Differential Corrections in Space S1 .

Differential Corrections in Space S
Differential Corrections in Space 3
Steepest Descent .

Marquardt Interpolation in Space § .
Convergence Criterion

Estimated Errors . . .

The Composition of FINLIE

= > [Y B I < B = A o B - - I

OUTSIDE FINLIE: WHAT THE USER MUST DO FOR FINLIE

A. ROME: The User's Subroutine for Fitting Differential
Equations . e e e e s e s

B. ROMA: The User's Subroutine for Fitting Algebraic
or Transcendental Equations . e e e

C. Calling Subroutine DUBLIN
D. Writing the Program that Calls DUBLIN

SUMMARY

ACKNOWLEDGEMENTS
BIBLIOGRAPHY .

LIST OF SYMBOLS

APPENDIX: Print-Out of FINLIE .

DISTRIBUTION LIST

Page

. 16
. 17
. 18
. 21
. 22
. 22
. 25
. 29
. 30
. 31
. 36
. 37
. 38

. 43

. 43

. 48
. 51
. 59

. 62

. 63

. 65

. 71

. 77

. 93

i St i B aa o e e L e - — g

LTST OF TABLES

Page
I. Sample Data Points for System (3) or (4) 12

1I. Path from PO to P7 for System (3) or (4)

" i and the Data of Table I 14
i‘ ITI. TInfluence Equations for System (3) and for
. System (4) . 0
“; | IV. Matrix Eguation for System (3) or (4),
. '} Given Data from Three Rounds 28
- V. Typical X Values During a Fit 35§
Lo VI. Subroutine ROME for System (3) 47
i;f ;i, VII. Subroutine ROMA for System (4) 50
Tg ‘.f'l FIGURE
3 [;;_ 1. FINLIE and the User: a Schematic 39

SRR . Accessiinn Fam]
AR NTTS ooy w”‘b?*L——
¥ | DTiC o ol
Ui E .J:
JoooLoo)
‘ 4
| S | - |
i Dicter ., T
Y , . -
E) F . Avero oy Codes
: Avti Lo fop
' Dist . opocial
|
4
n, |

w

I. INTRODUCTION

This report presents and discusses a general-purpose FORTRAN
equation-fitting program called FINLIE.

Assume that the behavior of some physical system can be adequately
described by a set of equations involving one independent variable x
and N2 dependent variables (N2 » 1). FINLIE requires that these equa-
tions be reducible to one of two forms:

(a) a system of N2 first-order ordinary differential equations
of the form

dyj/dx = fj (x, Y, C [j=1, 2, ... N2] (H
where Y is the vector of N2 dependent varial ‘es:

Y

SCTRFTRRERIR /Y7

and where C is a vector of N3 linearly independent parameters (N3 = 0):

C = (cl, Cos o CNS)
(b) a system of N2 algebraic and/or transcendental equations of
the form
= j = 2, ... N2 2
y] = gJ (X, YO’ C) [J 1’ ’ N] ()
where Y0 is the initial condition vector:
Yo = Or1pe Y200 =+ Yn2,0)

The user writes his system (1) or (2) as a FORTRAN subroutine whose
name is submitted to FINLIE. FINLIE's task is to adjust the parameters
and initial conditions of (1) or (2) so as to fit the solution curves
to measurements taken on one or more of the dependent variables. For
system (1), no knowledge of the form of the solution is necessary.
Indeed, we may in general assume that system (1) possesses no
closed-form solution of the form (2). Otherwise, we would fit the
solution equations rather than the differential equatioms.

System (1) can be linear or nonlinear in the parameters; system (2)
can be linear or nonlinear in the parameters and in the initial condi-
tions. However, linear parameters and initial conditions are not much
of a challenge to FINLIE. Indeed, the word FINLIE can be viewed as an
acronym for "FItting NonLInear Equations'; the program was created to
handle nonlinear situations. (System (1) may also be nonlinear in the
more common sense of 'monlinear in the dependent variables™; for our
purposes, this is irrelevant.)

FHECEDING PAGE BLAMK-NOT F1LMED

ke WY ’ . e i S

L

As 3 rather elementary example of system (1), consider:
dy,/dx = 1/y
1 2 (3)
dyz/dx = - (1+c2y2)y2, 4 #0
Here N2 = N3 = 2, If x is interpreted as distance, ¥y as time and

y, as the magnitude of a missile's velocity, then (3) is essentially

the drag equation for a horizontal flight in which the drag coefficient
varies linearly with Mach number.

One of the reasons we chose this particular example is that it
does possess a closed-form solution:

Y]_ = ylo = Cz (X = xo) + (b/cl) (u - 1)

-1
y, = (bu - c,)
where u = exp [Cl (x - XO)])
-1
b = <) + ()’20)

In '"real life'" we would alwavs fit (4)--which is of the form (2)--
and forget about (3). In this report, however, we will use both (3)
and (4) to illustrate our remarks.

FINLIE is given measurements on the first N1 of the N2 dependent
variables; that is, on Yie Yo cor VN1 where 1 < N1 < N2. The m-th

data point R thus consists of N1 measurements at the independent

variable valus xm:

Rm - (xm’ Y1m’ Y2m’ e le,m)

where ;sm denotes the measured value of yj at X .
Assume that the measurements have been obtained from one or more
distinct experiments, each experiment having its own initial condition
vector. Because our first practical application of FINLIE was to rounds
fired in an enclosed range, we will call each distinct experiment a
round. By '"multi-round" data, then, we mean NR sets of measurements
(NR > 1), all applicable to the same system of equations and hence help-
ing to determine the single parameter vector C, but each measurement set
determining its own initial condition vector.

Thus there are NR x N2 initial conditions to be determincd:

1€ = {(Yo)l. (Yo)z' (YO)NR}

8

ARs1IRTE T TP T .
' v wv-”WWmn,wmu-w‘qwlm,w Fere

FINLIE requires that these initial conditions refer to the same indepena-
ent variable value X, for every rcund. However, X need not coincide

with any value X at which measurements were taken and X4 need not even
fall within the interval bounded by the smallest and largest of the X,
values. (0f course, the farther Xq lies from that interval, the more

unreliable is tiie extrapclation to that point.)

We assume that within each round, the X values increase with

increasing m. For example, if we have two rounds with four and five
data points, respectively, then

and < X < X < X, < X

5 6 7 8 9

but no demands are made on the combined ordering of the nine values.
A member of the first String of inequalities above can be less than,
equal to or greater than some member of the second string.

X

For convenience we coin the word "paramic'" to mean ''parameter or
initial condition." Of course, the initial conditions are parameters
of a sort: parameters whose values can change with Xy and with the

® round. Thus, for example, system (4) could have been written in terms
E ' of four '"parameters'; say, in the form

Y| = €3 - X + (¢ /cy) z
= (c,2)71
Yo = (Cyq2 - &y

where z = exp (clx), This fcrm conceals the fact that the values of

two of the four cj‘s will change with the initial conditions.

By our definition, a parameter is independent cf the choice of

X, and applies to (and is influenced by the measurements from) all the

A 0
E rounds. This is the essential condition we inpose on the NR rounds to

] be fitted simultaneously: that the same parameter vector C applies to
each round. The measured data for any one round may be incapable of
determining C adequately; the combined rounds have a much bhetter
chance.

FINLIE's task is to find the set of paramics

p = {1C, C} (5)
that best fits the solution curves to the multi-round measurements,

9

I e v, YO .

Note that P consists of NR x N2 initial conditions and N3 parameters, a
total of

N = (NR x N2} + N3 (6)
paramics. By a "best fit', we mean a least squares fit. That is,
FINLIE seeks a particular set P--call it f.-that minimizes e, the sum
of the weighted squares of the residuals of the fit:

N1

“im Tim = Y5 G D1 (7
Y=
where
N4 = the total number of data points Rm for all the rounds;
wjm = a non-negative weighting factor associated with yjm;
yj(xm,P) = yj evaluatea at Ao using the current value of P.

Other convenient measures of the goodness of fit include:

2 _ e{P
(a) the estimated variance of the fit = S = NZ-%

(b} the estimated standard deviation of the fit = s
(c) the estimated probable error of the fit = 0.67449 s,

Note that for a least squares fit we must have N4 > N; that is,
there must be more data points than paramics. (We aiso assume that the
number of data points in each round exceeds N2, the number of initial
conditions for each round.)

The function e is nondimensional. Hence, if we let
[]d = dimensions of []},

Eq. (7) implies that

lem]d = [)'j]d (8)
[f the user fails to specify the values of the weights, FINIIE will set
all weights to unity. This may or may not be adequate. Usually the
weights are chosen so that each term in (7) is of the same order of
magnitude. This can be done by making wjm inversely proportional to

the square of the uncertainty in measurement §5m:

10

wjm = K/(ojm)2 (9)

where K is a nondimensional, positive--but otherwise arbitrary--number.
That is, in general only relative uncertainties are ncededa.* Suppose,
for example, that there are two measured variables:

Yy (furlongs), for which the uncertainty in each measurement
is about ten furlongs;

Y, (fortnights), for which each uncertainty is about 0.1 fortnight.
It we choose K equal to, say, (clm)2 in (9), we have

100/100 = 1 (furlong) >

w =
Im
4 . -2
Wom = 100/0.01 = 10" (fortnight)
. , 4
Any other weights for which W Win = 107 would work as well., In fact,

any weights for which the ratio is ''close' to 104--say, within a factor
of two larger or smaller--would probably work as well. Letting FINLIE
set all weights at unity, on the other hand, would not work well at all
in this situation. The y, measurements would then have much too great

an influence on the fit; their noise would drown out the y, measurements.

If measurements are taken on more than one dependent variable
(that is, if N1»1), it may happen that for some data point Rm, one or

more (but not all) of the measurements is missing or is clearly very

wrong. There is no need to discard the entire data point; it suffices
to set the weights of any missing or outlier measurements at zero.

If we are fitting the solution system (2} to the data, FINLIE
computes the values yj(xm,P) in (7) directly from the given expressions.

If we are fitting the differential equation system (1), however, then
FINLIE must obtain yj(xm,P) by numerical integration. When we have

a choice, we pick (2} over (1) to avoid this integration: 'tis a
summation devoutly to be missed.

Each time FINLIE is called by the user, it performs one iteration
of its search procedure. That is, the user gives FINLIE the paramic

set PO and FINLTE returns a set Pl. Pl is almost certainly not the

desired solution, but it should be an improvement over Py in the sense

that E(Pl) < g(PO). The user then gives FINLIE the set Pl and gets

back P,, and so on. The process stops when a specified convergence
. “~ . . ~ - . .
criterion 1s satisfied or some computational disaster arises.

* . o T . . i R} . 1
However, for an absolute Dntermperotion o € (0id 000 Pror measiones
bused on ¢) K showld be 1. .

11

e R e e ekt

To illustrate some of the above generalities, we return to our
sample systems (3) and (4). Suppose that from three enclosed-range
firings we obtain the data points (xm, ylm) listed in Table 1.

Assume that the xm values in the table are exact but that each of the

sixteen measurements has an associated uncertainty o (seconds).
1 Y %1m

Table I. Sample Data Points for System (3) or (4)

T X (metres) ylm(seconds)

1 0.0 2,0000000

2 1.0 2,0100507

3 2.0 2.0202034 Round El
4 3.0 2.0304591

5 4.0 2.0408189

6 -3.0 ~-0.0147728

7 -2.0 -0.0098987

8 -1.0 -0,0049746

9 0.5 0. 0025064 Round E2
10 1.5 0.0075577

11 2.0 0.0101027

12 0.0 3.0000000

13 1.0 3.0033506

14 2.0 3.0067358 Round E3
15 3.0 3.0101561

16 5.0 3.0171031

Here we have NK = 3 rounds (the three firings), N4 = 16 measure-
ments and N = 8 paramics. The paramics are the six initial conditions
and twu parameters:

c,, C,} (10)

P = (e 20k V107200820 Pr07Y200830 10 ©2

where we arbitrarily let xo--the x value at which all six initial

conditions apply--be zero. The values of the eight paramics are to
be adjusted so as to minimize

16

C(p) :2 wlm [S,-lm -)’1 (xm:p)]2
n=

Whenever only one dependent variable has been measured (N1 = 1),
tnhe user--unless he has information to the contrary--can assume that

all the uncertainties Oy, ave equal. This simplifies matters by

allowing the user to set Wim T 1 for all m, Thus, for Table I, we set

12

Wy =1 (seconds)™ > [m=1,2,...16]

The '"measured" ;&m values in Table I were actually obtained by
rounding to seven decimal places the values computed from the solution
system (4), using Xy = 0 and

P = {(Z,IOO)EI, (0,200)52, (3,300)E3, 0.01, 0.,0001}

The ;im values in the table are thus equal to yl(xm,P) to the number

of decimal places shown. FINLIE's task--given system (3) or (4) and
the Table I data--would be to find P.

FINLIE must be given another bit of information before it can
begin its search for P: a starting point PO. For systems (3) and

(4) and the Table I data, we gave FINLIE the relatively poor first
estimate
Py = {(1.5,50)

(-0.5, 250) (2.5,250)E3, 0.02, 0}

E2’

to P2 and so on to P7, an acceptable

E1’
FINLIE then proceeded from PO to Py
approximation to P (see Table IT). Within the idiosyncracies of machine
computation, this path from PO to P, is the same whether we fit system

(3) or system (4). As one might expect in a convergent situation, the
last two points (P6 and P,) are practically coincident. The slight

discrepancy between P7 and P is due almost entirely to the round-off

error in the'?lm data of Table I.

Unfortunately, a poot choice of PO can sometimes prevent

FINLIE's ever finding P. Hence a reasonable amount of labor expended
in determining PO may pay dividends. For frequently recurring

applications, it may be worthwhile for the user to write his own
FORTRAN subroutine for extracting a first estimate PO from the data

points. Usually only a few of the paramic estimates are critical
for obtaining convergence to P; the remaining paramics can have sur-
risingly poor first estimates with impunity. And for some systems
vt equatjons, the choice of PO is very nearly immaterial: all roads
lecad to P,

A useful feature of FINLIE is its ability--at the user's
request--to hold fixed the input values of any specified paramics,
rather than allow those input values to be adjusted by the fitting
yrocess. Thus, for example, the effect of a given parameter--say,
¢, in system (3) or (4)--cau be suppressed during a computer run by

-

glving that parameter an initial value of zero and specifying that this

13

Table TI. Path from PO to P7 for System (3) or {(4) and
the Data of Table I.
Round El Round E2

Y10(8) Yoo (m/s) Yyo(s) Yoo (m/s)
P0 1.5 50 ~-.5 250
Pl 1.698 69.75 -.000555497 189.54
Pz 1.9995830 90,83 -.000005638 198.90
P3 1.9999%96 99.18 ~. 000000546 199,531
P4 2.0000001 99,993 .000000391 200.009
P, 2 99,999727 . 000000010 199.9939576
Pg 2 9Q,699727 . 000000012 199,599612
P7 2 39,995727 . 000000012 199.999612

Round E3

Y10(8) Yoom/s) ¢, {1/m) ¢, (s/m)
PO 2.5 250 .02 .0
P1 2.9987 270.35 .0338 . 0096
P2 2.9999974 298.31 . 0059 . 0056
P:5 2.9599997 300.13 . 0082 0122
P4 3.0000003 300.02 . 00997 -,0024
PS 3 299,999242 . 009998427 .000106786
P6 3 299,999324 . 009998405 .000100384
P7 3 299,999324 . 009998405 .000100384

6

10 e(Pn) e(Pn)/e(Pn_l) _s_t_::d‘ dev.
PO 3888205. .5972
P1 198.66 . 00005 .0050
P2 15.27 .07688 .0014
P3 3.33 .217961 . 000645
P4 .20 . 05936 . 000157
P5 .0000013 . 00001 . 000000398
P6 .0000000023 .00185 .000000017
P7 . 0000000023 . 9999995 .600000017

14

value is to be retained. Since it is the user's task to progiam his
particnlar version of equation set (1) or (2), we see that the above
feature can save the user from programming many versions of the same
equations, the versions differing cnly in the nature of the parameters
involved. If the version programmed contains every parameter 2
reasonable (or only slightly unreasonable) person might ever want to
consider, the programmer need never alter his progvam; he can always
suppress unwanted parameters at will,

Of course, the user can also fix any paramic at a nonzero value.
Consider, {or example, the situation where some of the input paranmic
estimates are known to be respectable, ball-park values, while the
remaining estimates are little mecre than wild guesses. There is no
provision in FINLIE for welighting the paramic estimates. Thus when
the dzta are especially noisy, FINLIE--in its single-minded effort to
decrease ¢--might very well downgrade an excellent estimate. One
way to avoid {or at least to try to avoid) this difficulty is to make
two computer runs. On the first run, all highly regarded paramic
estimates are held fixed, so that the other paramics will be determined
for these fixed values. The fixed and determined paramic values from
this first run then serve as the estimates for a second run in which
none of the paramics is held fixed.

The mechanics of informing FINLIE as to which, if any, of the
paramics is to be held constant will be covered later.

In Section 1I, we discuss in more detail what FINLIE does for
the user; in Section II7, we discuss what the user must do fur FINLIE.

II. INSIDE FINLIE: WHAT FINLIE DOES FOR THE USER

We rewrite the paramic set P of Eq. (5) in the form
P = (pl, Pys - pN) (11)

where the first NR x N2 elements of P are the initial conditions and
the remaining N3 elements are the parameters.

We can regard P as a point in an N-dimensional paramic snace S.
Then ¢(P), as defined by Eq. (7), is the value of the continuous
scalar point function ¢ at point P. For each point P in the paramic
space S, there corresponds a single value e(P). FINLIE's task, given
a starting point Pgs is to search S for a point P that yields a minimum

value e¢(P). (When more than one minimum exists, our choice of starting
point PO usually determines whether or not ¢(P) is the desired

absolute minimum.)

15

e i A e s P N Y " ——— —— y . ! ﬂ

The fitting precess carried out by FINLIE can best be explained in
R terms of & single-round situation. Once the single-round procedure has
SR, been established, it will then be relatively easy to see how the
a process can be extended to any number of rounds,

Hence we introduce a single-round paramic set Q:

3 ?;7:%4‘ Q = {ay, Gy -+ Gyps) (12)

. l‘,‘._' 8 Where
e N23 = N2 + N3, (13)

the aumber of paramics for a single rvound. The first N2 elements of
Q are the initial conditions and the remaining N3 elements are the
parameters. For our sample system (3) or (4), we have (for any one
rournd)

Q = (le’ Y20: cl’ CZ).
Similarly, we introduce a single-round version of e(P):

N1
v(Q) = % Jz;l Wi D = 75 Q17 (14)

where the summation on m is over the measured data for the single round.
(For Round E2 of Table I, for example, m would range from 6 to 11.)

Note that the ¢ for a multi-round situation, FEq. (7), is the sum of

the y's for the individual rounds:

: 5 NR
e = Z (Y)En (15)
5 n=1

For the moment, then--a rather long moment, lasting until Section
TT1 (G)--we will assume that FINLIE is handling a single-round
situation: only one set of initial conditions is being determined.

B RISES

N A. Condition for a Minimum vy

sm'ﬁ°_fi We can regard Q as a point in an N23-dimensional space S+ A

necessary (though insufficient} condition for point Q to yield a

N minimum value of y is that the gradient of y at that point be the zero
- vector:
= fay(Q 3y (Q 3y (Q ;
grad y(Q) = g(Q) , g(QJ , e e 51191. =0 (16)
o 4 92 IN23 5,
£ o _’f Thus FINLIE must seek a point that satisfies all N23 components of (16)

simultaneously. From Eq. (14), we see that at any point Q

16

TR o i S i SR A

E%LQL = -28.(Q [k=1,2,...N23] (17)
a k
where N1
@2 Y Y Wy ey @1 0000 (8)
m j=1
Dsp (xpe@ = 3y, (x,,Q)/3q, (19)

and where, in our dimensional notation,

-1 5
(8 1q = " g (20)

(D53 d4 = [yjqkmlld (21

Thus condition (1€} can be written in the form

(k=1,2,...N23] (22)

The N23 components By define a vector:

£ @ = (8@, B,@, . - . By @) (23)

which, from (16-17), has the direction of the negative gradient of vy
at point Q; thkat is, the direction in which the rate of decrease of v
is greatest:

g = -(1/2) grad v. (24)

g is a vector peint function of Q. For each point Q in the paramic
space Sl’ there corresponds a unique vector 8. Thus FINLIE's search
for a point 6 that yields a minimum value y(Q) has become a search for

a point Q at which § is zero.

B. Influence Coefficients

The partial derivatives Djk in (18) are scmetimes called 'influence"

(or "sensitivity") coefficients because they reflect the influence of
the paramics on the sclution curves.

To satisfy (22), FINLIE must be able to evaluate the influence
coefficients at any peint Q for each independent variable value X

17

The manner in which FINLIE evaluates Djk(xm’Q) depends on which
equation set, (1) or (2), we are fitting to the data.

C. Influence Equations for System (1)

If we give FINLIE the differential equation system (1), then we
must also give FINLIE a system of differential equations for the
influence coefficients. Taking the partial derivative of each side of
(1) with respect to paramic Qys We have

AR
3q, \ dx N 2q,

or, assuming that the order of differentiation can be reversed,

d Dy af .
< - 1 (25)
dx 3qy *

j=1,2,...N2]
k=1,2,...N23
The system (25) is subject to the initial conditions:

) {1 if j=k

0 otherwise (26)

Djk (xO,Q)

(These initial conditions merely reflect the fact that the influence
coefficient Dij is, by our definition, Byj/ayjo and hence equals one

at xo.)

The paramics affect f, (x,Y,C) in two ways: indirectly through
J

their effect on the dependent variable vector Y and directly through
the parameter vector C. Hence (25) can be rewritten in the more
cumbersome but (possibly) more revealing form:

N2 \ 0 if k < N2
d D, af .
‘3&1" = s_i. D, *+ of . if k > N2 (27)
i=1 yi C d
%-N2/,
[j=1,2, ... N2
k=1,2, ... N23]
18

where

subscript C indicates that x and vector C are considered
constant in taking the partial derivatives of fj(x,Y,C);

subscript Y indicates that x and vector Y are considered
constant in taking the partial derivatives of fj(x,Y,C).

Thus, by "parsmic differentiation” we obtain an auxiliary system of
differential equations (27) whose solutions are the influence coeffi-
cients needed to fit equation set (1). Note from (27) that these
influence equations are always linear in the influence coefficients
Djk' The number of influence equations is

NA = N2 x N23 (28)

The user must include his version of system (27) in the FORTRAN
subroutine containing his version of system (1).

For our by-now-familiar example, system (3), we have NA = 2 x 4 = 8,
The eight influence equations for system (3) are shown in the upper
portion of Table III, where {)’ = d()/dx.

Recall that our only purpose in obtaining the influence coefficients
is to be able to evaluate ek(Q), Eq. (18), in our effort to satisfy

conditien (22). From (18) we see that Bk involves Dj only for

k
j=1 to N1; that is, only for the measured variables. Yet Eqs. (25~27)
show j running from 1 to N2; that is, over all the dependent variables.
Do we have more influence equations here than we need? The answer is:
no. We have implicity assumed that there are no extraneous dependent
variables in system (1): all of the unmeasured dependent variables
are needed to solve the differential equations for the measured
variables. Hence the Djk for N1 < j € N2 are also needed.

For our example, system (3) with Nl=1, Y, is clearly needed to
solve the differential equation for Y1 Thus each D2k is also needed,
as we see in Table III (A). (Cn the other hand, if Yy had been the
only measured variable in system (3}, then Yy would be an extraneous
variable and should be thrown out.)

The mechanics of writing and submitting the influence equations
will be discussed later. FINLIE will automatically assign the proper

initial conditions (26) and integrate the influence equations simul-
taneously with the original system (1) to obtain yj(xm,Q) and

Djk(xm,Q) at each X

19

vy

A et vaia b oy skt R

(A)

(B)

(©)

Table IIT,

Influence Equations for System (3) and for System (4)

For System (3):

(o) =

i

(0,,)"
(D,)"

(D

1

4
23) -

(Dyg)" =

2 Ay, /3,y 7 mey (Ie2eyy))Dyg - €Yy

3y, /3y = -(yz"z)D21
3y, /3y, = -(y2'2)022
ay, fae; = -0y, DDy,
Yy’ /3c, = '(Y2_23024

[= -

Yy /3¥g = =€ (1+2e,y,)Dyy
’ —

3yy /350 = -¢1 (1+2e,¥,)D,,

ayz'/fic1 = -c1(1+2c2y2)D23 - (1+c2y2)y2
2

where (Dll)O = (DZZ)O = 1; (Djk)0 = 0 for j #k

For System (4):
Dyp = 3yy/3yyp = 1
2

= = _ - /

- _ 2
D13 z ayllacl = (b/c1) [1-u+c1(x-x0)u]
014 z ayl/ac2 = (u-l)/c1 - (x—xo)
Unneeded Influence Equations for System (4):

Dy = 3Y,/3Y5

0

- _ 2
Dy = 3Y/320 = (¥p/¥pe) U
- _ 2
023 z ayz/acl = -by2 (x-xO) u
_ _ 2
Doy = ay2/3c2 = -(u-1) Yy
20

e s Wil R e h

One final remark. For large systems with many paramics, the
exact influence equations (27) can be rather cumbersome. In many
cases, certain liberties can be taken with the influence equations:
expressions can be approximated by simpler ones, the effect of certain
paramics on certain terms in the original equations can be ignored,
etc. If done with care and judgment, such simplifications will have
no effect on the final answer: the same péint Q will be reached with
or without the simplifications. Note, however, that discretion is
called for. If the user has any doubts as to the merits of some
modification to the exact influence equations (and even when he hasn't
any doubts), his safest course is to avoid such a modification.

D. Influence Equations for System (2)

If we give FINLIE the solution set (2), then we must alsc give
FINLIE the influence equations obtained by differentiating (2):

3g. .
D < g j=1,2, ... N1 29
ik) (29)
J 9k k=k,2, ... N23

We assume--as with system (1)--that there are no extraneous variables
in system (2). (For (2), this means that the initial conditions for
all of the unmeasured dependent variables are needed to evaluate the
expressions for the measured variables.) However, the Djk for

N1l < j < N2 are superfluous and should be ignored. Thus the number
of influence equations required to fit system (2) is

NB = N1 x N23 (30)

To fit system (4), for example, (where NI = 1 and N2 = 2), the D2k

values are not required and we need submit only four influence equations
to FINLIE. These equations are shown in Table TII (B). FINLIE will
automatically set all undefined Djk's to zero. For the sake of

completeness, expressions for the unneeded D,, are given in Table III

jk
(C), but we emphasize that these latter equations should not be given

to FINLIE. Note that the eight expressions for Djk in Table ITI (B

and C) do indeed satisfy the initial conditions indicated in part A
of the table.

The remarks in the previous section on the possibility of

simplifying the influence equations apply to system (29), although
here the urge to simplify may be less compelling.

21

T T R L RS Foev g e e PR IR EOk

E. An Overview
To summarize thus far: FINLIE determines the values of yJ (xm, 0)

and Djk (xm, Q) either

(i) by numerically integrating a system of N2 plus NA first-
order differential equations or

(ii) by evaluating a system of N2 plus NB algebraic or
transcendental expressions.

Except for this difference--but what a difference it can be in terms of
machine time!--the fitting process used by FINLIE is the same for the
two equation sets (1) and (2).

This fitting process consists of adjusting Q until it satisfies
condition (22). Of course, it would be pleasant if FINLIE could solve
(22) for Q in some direct, one-step fashion. No fooling around with
QO, Ql’ etc; just leap in and solve the N23 equations of (22) for the

N23 components of Q. Unfortunately, when system (22) is nonlinear in
one or more of the paramics, no such general one-step schenie exists.
Hence FINLIE, expecting the worst, sets out to solve (22) by an
iterative process.

Two of the standard iterative techniques are:

(i) differential corrections (alias Taylor-series lineariza-
tion, alias Gauss method, alias Gauss-Newton method);

(ii) steepest descent (alias gradient search).

FINLIE uses a third method, due to Marquardt*, which is a blend of the
first two methods, retaining the best features of each and avoiding
their disadvantages. We will discuss enough of the differential
corrections and steepest descent techniques to see what is involved in
combining the two.

F. Differential Corrections in Space 81

For each point @ in 54 there corresponds a position vector 6.

Let Aa be the vector from point { to point Q:

§ -3+ ad \

@ + (aq), bay .o A“N:zs)s1 |

(31)

1]

* See the Bibliography, Part A.

(2
)

In the differential corrections technique, we approximate the basic
condition (22) by a system of equations (to be derived in the next
paragraph) that is linear in the increments Aq, . We can't solve (22)

for Q, but given a point, say QO' we can solve the approximate condi-
tions for an approximate increment vector Aao. This increment is then

added to 60 to reach the next way-station on our trek to Q:
§ = 4, + &, (32)

Point Q; 1s «n improvement over point Q, if y(Ql) is less than y(Qo).

But improvement or not, the differential cerrections method plows
ahead, u-~ing Q1 to re-solve the approximate equations for a new incre-

ment Aal. The process continues in this manner through a series of

points until a specified convergence criterion has been met or a
specified number of iterations have been performed or some numerical
catastrophe occurs.

The desired approximation to condition (22) can be obtained by
expanding yj and Djk in Taylor series about point Q. We have

N23
(%, Q) ; D;y (@) + 4q,
- (33)

+ (higher-order terms)

y] (xm-Q) = Yj

Djk (xm,Q) = Djk (xm,Q) + (higher-order terms) (34)

We assume--an assumption that is not always valid--that Q is close

enough to Q to permit us to ignore the higher-order terms in (33) and
(34). Then from definition (18), we have

N1
B (Q = ; JZ Won(¥5q =7y Gp@ e 0y L@

N N23 1
z; ;: wjm [yjm - yJ. (xm,Q) -; Djn(xm,Q) * Aq J- Djk(xm,Q)
23
= 8, (Q) };2 Win Djp O @ -[m Din (@ - Aqn]

23

By rearranging the sums, we obtain

23

where

o, (Q) ; ?: Wim * Djk (5@ ¢ Dy 06,Q) (36)

Thus the conditions Bk(a) = 0, which hold at a point 6 where v is at a

minimum, are replaced by the conditions

23
ﬁ: Un @+ Bay (37
n=

1, 2, ... N23]

By (@)

[k

1]

which are applicable to points in the vicinity of §.

The quantities akn(Q) have at least four interesting properties:

lagnlg = [lagay) ap

1
2
=
e
i
o4
=
=]

(38)
%Kk

2
“nn “kk > ®nk

’7‘]

The first three properties follow at once from definition (36); the
fourth is a consequence of Holder's Inequality (alias Cauchy's, alias
Schwarz's, alias Buniakovski's Inequality). 1In general, we regard aQn

as the (k,n)-th element of an N23 by N23 symmetric matrix «a.

In matrix form, (37) becomes
——

la(@ - &' = 3@, (39)
1

24

;o
i
v 4
i g
[3
i

i3
13
i

)

,_.A._.-.__.d..q,.-'—\—

e et o arigs bt

-
q’
?

3 -

AVEATEINE Ly

where the superscri

pt T (for Transpose) denotes a column vector and the
subscript Si

indicates that all components are in the N23-dimensional

space Sl' For either of our examples, system (3) or (4), (39) becomes
1 %12 %13 %4\ /Mo 51\
%21 %22 %3 %4 [Y3 B,
= (40)
%31 %32 "33 O3y {] Aoy Bz
®41 %42 %43 44 €y 84/

System (39) is linear in the increments Aqk; hence the process of

solving for these increments is routine work for the computer. (We

assume that a solution does exist; this amounts to assuming that the
determinant of matrix o is not zero.)

The differential corrections process, then, consists of substitut-
ing QO in (39), solving for KQO‘ substituting in (39) the point Q1

obtained by the vector addition 51 = 60 + Aao, solving for KQI, etc.
Unfortunately, even when this process converges to some point,
there is no guarantee that this point will yield the absolute minimum
vy. Condition (22)--which is approximated by the matrix equation (39)--
guarantees only that its solution point Q will yield some relative
extremum value of y. Space S1 could be teeming with points of local
extremum. Each of these extremum points,
is a sort of black hole in space S

party into its core. The particular black hole into which we are drawn
depends mainly on where we start in space Sl'

including the one we seek,
1> capable of drawing a nearby search

G. Differential Corrections in Space S

So far in Section IT,
For this situation,
matrix equation (39)

we have assumed single-round data, NR = 1.
the differential corrections technique led to

For each round
Ej and a matrix ap. by Egs. (18)

and (36) respectively, using the Q and m indicated below:

Consider now the three-round situatjon of Table T.
Ei (i =1, 2, 3), FINLIE forms a vector é

ro
192]

Round

Point Q

El

E3

10620 V200E20 €1

Cc

U1derr O20lk1r S10 ©2

2

Yi0desr apdpse €10 €2

Range of Subscript m
in Egs. (48) and (36

1 to 5

6 to 11

12 to 16

In the 8-dimensional space S associated with the eight paramics Py of

Eq. (10), the EEi vectors take the form:

By = (B85 Bpys 0,0, 0, 0, (8)p,

fe
[

(o, o,

E3 [O) 0’

)
(BllEz’ (BZ)EZ’ 0) O’ (BS)EZI

(Ba)gqlg

(84g3lg

Similarly, in space S the matrix a for round El expands to:

/““11)51
(

“E1

El

(agy)g,

NCIT P

with similar expressions for a

(ay5)g

(s,

(0550 pq

(ag5) gy

<

=)

<

£2 and o

o

(=

o

(ag3)p
(@53)5;

0

(ay 40 p)

(o4 E1
0
0
0

0

(ag4)py

(34405

(41)

(42)

Since the multi-round € to be minimized is the sum of the single-
round y's, FINLIE obtains the multi-round version of Lgq. (40) by summing
--in space S--the three single-round i

26

Ei

vectors of Eq.

(41):

Bz By « By, EES]S (43)

and the three single-round %py matrices:

= 3
A2 fag) + agy + agslg (443

The desired multi-round matrix equation is then
[ae) - 7= 8T (45)

A detailed form of this equation for our three-round sample system is
given in Table IV; the generalization to any number of rounds can be
easily visualized,

The N by N symmetric matrix A will always contain
NR x (NR-1) x N2 x N2

zeroes distributed among the off-diagonal elements of all but the last
N3 rows and columns. Let 8 be the (k,n)-th element of matrix A. As

in Eqs. (38), we have
-1
[akn]d - [(pkpn)]d

a = a

nk kn
(46)
akk > 0
2
2 n?kk > 3nk
Similarly, if bk denotes the k-th component of vector §, then
b1, = [p,] (47)
kid 7 Px Jg

We have taken some pains to distinguish between the multi-round
paramics Py and the single-round paramics 4y » which for our three-round

sample systems take the form

p

(019:Y200E1r 107200822 10Y200E3% €10 ©2)
Q= Oyp¥20 €1 2

27

S0ty , 2Pk, |, 1A

93 1

O T

n By, TAWhyy |, T

*(£°2°1=1) 19 punox woi3 Blep poinsesuw 3Yy3 uo A1310S paseq () 30 antea ayy saj0uap ﬂmm) aJaym

\\ vh// \\ oy g trg €3 Thy €9 (Th5) T3 (Thys) 28 Tty [ERAM Hmﬂﬂvmy S
£ Too v €5 £d(ZEn) £9(165)23 200y T5p, 14,25, (EPRERS
1 mmmmmu mmmoN»QV mmmvmcv mmmmmdvmmﬁNmuu mmﬁﬁmau 0 0 0 0 j
| £31g) €301) Svly) £4(STo)s gy £ATL, o o o |
Ayl o | a0y, LA 4 PX A 0 0 43 (T2ny T (124 0 0
Nmaﬂmv Nmﬁoaxqu Nmﬂvaau Nmmmauu N 0 Nmﬁmaau mmﬁaﬂdu 0 0 M
13,24y 10240y W (W25y T35, 0 0 0 0 W2y T(Ig, w
| fumﬁﬁmv ﬁmﬁoﬂxww\ r“mﬁvﬂau T4 5T, 0 0 0 o 13 21y, ﬁmﬁmﬁwv
] Spunoy 9dJy] woxy eleq UdATY ‘(y) 10 (g) WeisAg Jo0J uotienby xtxley Al orqef i

F T T T VT T PP T U T T T LI VP TU Ty Ty VO VL Py P T A e Frwur W P

The chief reason for taking these pains is that the FINLIE user must
himself make this distinction in a multi-round situation. The FINLIE
input arguments (to be discussed later) are defined in terms of the N
paramics py, but the influence equations submitted to FINLIE must always

be written in terms of the N23 (= N2 + N3) paramics Qy - The values of

the initial conditions may change with the round, but the influence
equations themselves, like the original equations (1) or (2) on which
they are based, remain the same. Thus, regardless of the number of
rounds, there will always be N23 influence coefficients, defined in
terms of the N23 paramics s and there will always be NA (= N2 x N23)

or NB (= N1 x N23) influence equations (depending on whether the user
is working with system (1) or system (2)).

H. Differential Corrections in Space S

If the paramics p, are not all of the same dimension, our paramic

space S is a hodgepodge: a salmagundi, a gallimaufry, an olla-podrida
of units. Certain computaticnal advantages can be obtained by working
in a space S in which the paramics--and hence the components of grad
¢--are nondimensional. (The advantages of S are especially compelling
in the steepest descent technique, some of whose properties are not
scale-invariant.)

To achieve the desired paramic transformation from S to §, we note
from Eqs. (46) that
N
kk'd k d
or

[(akk)% Pl =1 (48)

That is, the bracketed quantity in (48) is nondimensional. Thus the
paramic transformation

~ 1
Py = (a7 py (49)

creates the desired* paramic space S. The elements of A and E in E are

*From Eq. (47), we see that the product bkpk 18 also nondimensional.
Thus, the transformation

Px = ByPx

seems appealing; it would lead to a space in which all compenents of B

are unity. The appeal, however, s tllusory. It would not be very

wige to use as scale factors the very quantities bk that we are tryiny
1.

to drive to zerc, The scalc factors (akk)z, on the other hand, are

never zero (sce Ea. (46)).

29

‘.,

I N T R S = - =
K - Ce ’ - , Lt

At L e v e e

~ _!i

T Gy %kl 2k (30
~ 1
= e
bk (akk) bk (51)
These space s components have the following admirable features:
(i) pk, ajk and ‘bk are nondimensicnal;
(ii) the diagonal elements of matrix A are unity:
a = 1 (52}
(iii) the off-diagonal elements of A satisfy the inequality:
-1 < a5y <1 (53)
Finally, the form of matrix equation (45) is unchanged:
[Ay - 2T =8 Tm] N (54)
S

the subscript S serving to remind us that all components are now in
the scaled paramic space. Ninety-nine percent of the labor in solving
(54) for AP is usually expended in inverting matrix A. Use of the

scaled components ajk tends to increase the accuracy of the matrix

inversion process.

1
Note that each scale factor (akk)2 in (49) is a function of point

P, the curvent set of paramic values. Hence each time the paramics
are up-dated, a new transformation must be made: a new S space
created. "his i _no big problem for a computer. FINLIE handles the
scaling to space S and back again to the user's space S; the process
is automatic and invisible (in computer jargon, 'transparent') to the
user.

I. Steepest Descent

Consider a given point Po and the corresponding vector ﬁ(Po)

proceeding from that point. Recall that B at any point is a vector
in the direction of the negative gradient of ¢ at that point. Hence,

provided that the magnitude of ﬁ(PO) is not zero (if it were, Po would
be the desired solution P), §(PO) is the steepest descent vector for
point P,: a vector in whose direction e€(P) will decrease most rapidly

{(at least at first) as we move away from PO. Let Pl be any other point

30

-

i

in this steepest descent direction:

'131 = 30 +h - ’B‘(Po) (55)

where h is a nondimensional positive constant.

There always exists a range of h values, 0 < h < hmax’ for which
the point P, obtained by (55) is an improvement: e(P;) < e(Pg). The

steepest descent method determines the optimum h in this range: the
value of h for which ¢ is a local minimum along the vector B(P,). This
can be done by evaluating Pl and e(Pl) for a seriec of h values:

hO < h1 <h, <. .. Presumably, for a while e will decrease with

increasing h. As soon as an h is found for which the ¢ has increased,
the (approximately) optimum h for point P, can be determined by
interpolation.

Given the new point P, based on this optimum h, the next point

P, will lie in the direction of steepest descent from P;; that is,

along the new vector §(P1). Another optimum h must be determined to
obtain Py And so on to P.

The difficulty with this approach is that in the neighborhood of
the solution poipt P, where |B| is nearly zero and yet we are not quite

close enough to P to be able to quit with honor, further progress

is painfully slow. Often the sampling size on h, the Ah intervals,
must be shortened beyond all endurance in an effort to find a P

for which s(Pl) < e(PO). Ingenious variations on the basic steepest

descent theme have lessened but not removed this difficulty.

J. Marquardt Interpolation in Space S

The two fitting techniques we have discussed so far are:

(i) differential corrections, which in space 3 is based on matrix
equation (54); this equation has the component form

E a, . (P) - &P = b (P) (56)

[k=1,2,..N]

{ii) steepest descent, based on the vector equation (53}, which

in space S nas the component form

21

tp, = hby(P) (57)
[k=1,2,...N]
Comparing these two methods, we note that:

(a) Far from the solution point, the steepest descent
technique is superior. It must proceed so as to decrease
€, whereas the differential corrections method is under
no such compulsion and is likely to lead us into strange
pastures.

(b) Close to the solution point, the differential corrections
method is superior. It converges rapidly in the very
region where the steepest descent technique languishes.

Marquardt* has proposcd an interpolation between the two methods:
a technique that behaves like the steepest descent when we are far from
the solution and like the differential corrections method when we
enter a neighborhood in which the higher-order terms in Eqs. (33) and
(34) are negligible.

To achieve this interpolation, a positive nondimensional constant
A is added to each diagonal element of the scaled matrix A. That is,
the system (56) is replaced by

N
E a (P) - Apn = bk(P) (58)
n=1
where ~
akn =

1 + X when k=n
} (59)

= A when k#n
System (58) is the bedrock upon which the FINLIE fitting process rests.

Note the behavior of this system as a function of X:

(a) As A0, system (58) clearly reverts to the differential
corrections system (56).

(b) As A» «_ the diagonal terms of system (58) dominate and
the system degenerates into N uncoupled equations of the form

(1 + X)) Aﬁk = Bk

*See the Bibliography, part A.
32

T T T

[ar=—r==a

e s i

or, since by assumption A>>1,

~ _1 -~

Ap = X7 by (60)
Comparing (60) with (57), we see that for large A _values, system (58)
simulates the steepest descent approach with h=\"". That is, for

A>>1, (58) will take us to a new point a rather short distance from the
current point P in the direction of the negative gradient.

Marquardt has suggested an algorithm for determining a suitable

value of X for each iteration; that is, for each step PO to Pl, P1 to

P,, etc., on the path to the desired solution point P. This algorithm

(with a few very minor "refinements'") has been incorporated into
FINLIE. The basic scheme is as follows.

For the first iteration, PO to P., FINLIE assigns a tentative value

to A: 1
(starting x)po to Pl = AlA = 0.001 (61)
Let PlA denote a candidate for point Pl’ obtained by solving (58) with
P=P, and ST
.
311\ = 30 + BP(Py,2p,) (62)

The basic test that any point P should pass is that it be an improve-
ment over the current point:

e(P) < e(PO) (63)

If PlA satisfies test (63), then FINLIE returns that point to the user
gs the updated point P1 and is ready to start the next iteration, P, to
2"

If plA fails test (63), then FINLIE must take a smaller step in a

more propitious direction. This can be accomplished by increasing 1.
That is, FINLIE re-solves system (58) with P=PO as before, but with
XA increased to, say,

le = 10 xlA {64)

(Note that in re-solving the system (58), the elements ~%n (k#n) and
Ek do not have to be re-evaluated. They depend only on the current

point and thus are evaluated only once each iteration.) The new
increment vector for AlB yields the new candidate point:

33

T W TR et e e e
,

B, + &P (P, (65)

S Plp = 18)
| ? 1”_{ if plB satisfies test (63), then FINLIE returns this point to the
. user; if PlB fails test (63), then FINLIE increases A again by a factor
‘ of ten, and so on. Sooner or later, an acceptable candidate will be
found:

'ﬁl = 30 + 2p (po,lo“x (66)

lA)

where n is zero or a positive integer.

skip over a possibly long line of rejected candidates by increasing A
by some factor much larger than ten? This should get us to an accept-
| R able candidate point at once or at least in fewer trials. True, but
| SR the general principle is this: the larger the A, the smaller the
¥ N progress we are making. Hence we don't want FINLIE to use a) "very
e much" larger than needed to satisfy test (63). It is not worth the
1 C effort to find the optimum A for each iteration, but by testing after
T each ten-fold increase in A, FINLIE will not grossly exceed that op-
timum. (Indeed, a case could be made out for merely doubling A each
time an increase is required.)

{

i S

! S The cost-conscious reader may ask: if plA fails test (63), why not
}

The only way in which the second and subsequent iterations differ

from the first is in the formula FINLIE uses for determining the start-
ing A value for the iteration:

(starting A)p top 0.1 x (final X value used to (67)

- ‘:'f n-1 n produce point P__, in

the previous iteration)

That is, FINLIE always decreases the current value of A by a factor of
ten at the start of each new iteration. This decrease is an essential
part of the A manipulation. When all is going well, FINLIE will have
no need to increase X; thus rule (67) will insure that) goes to zero -
and hence that the process approaches the differential corrections

technique - as FINLIE approaches the solution point P.

A typical set of XA values encountered in the course of some
hypothetical fit (not our familiar examples, (3) and (4)) is shown in
Table V. The reader can infer from these A values the fleeting
existence of rejected candidate points. Thus, to get from P2 to Pz,

FINLIE clearly had to solve system {58) six times: for A=10w4 (that is,

one-tenth the previous 1), 10_3, 10-2, 10-1, 100 and 101 (the \ value
that produced a successful candidate). Similarly, to get from P5 to Pﬁ’

T , A i ~ L el e G tiac)

TABLE V. Typical A Values During a Fit
A value returned No. of times system (58)
by FINLIE at the - must have been solved by
Iteration end of the iteration FINLIE
Py to Py 1072 2
P, to P, 1073 1
P, to P, 10 6 (for A=10"4, 10‘3,...101#
Py to P, 10° 1
P, to Pg 1072 1
P to P, 107! 2 (for »=10"%, 107}
Pg to P, 1072 1
P, to Pg 1073 1
Pg to Py 1074 1
Py to Py 107° 1
Plo to Py 1076 1

35

et ek A A s R e it o sian

FINLIE must have solved (58) twice: for A=10"2 and 10™*. Thereafter,
the fitting process seemed to get back on the track and A decreased
steadily. Without Marquardt’s A in the system, it is likely that the
search represented by Table V would have gone astray after point P, and
come to some abrupt and ignoble conclusion.

K. Convergence Criterion

The question arises: wilen can the user accept a point returned by
FINLIE as heing ''close enough" to the desired solution? One possible
answer is: when FINLIE tells him he can. At the end of each iteration,
FINLIE returns to the user a flag whose value indicates whether or not
the returned point has satisfied a built-in convergence criterion.

(This flag will be discussed in section ITI(C).)

The convergence criterion installed in FINLIE is as follows. Let

and P_ be any two consecutive points returned by FINLIE: the
eﬂd points of two consecutive iterations. Then FINLIE will signal
convergence at point Py if and only if

0.99999 < (P)/e(P ;) <1 (68)

The right-hand portion of this double inequality is essentially
inequality (63) and hence is always satisfied, thanks to the Marquardt
A feature. The left-hand inequality in (68), however, constitutes

an arbitrary definition of convergence: namely, that the percent
change in ¢ has dropped below 0.001.

As an example of criterion (68) in action, consider the search
summarized by Table II. The values of CREe(Pn)/e(Pn_l) listed in the

next to last column of that table jump about erratically (always

between 0 and 1, of course) before the criterion is satisfied at point

Py The sudden transition from the value of CR at P6 to its value at
P, is not typical, In searches based on more realistically inaccurate

measured data, CR will often be close to - and monotonically approach -
the value 1 over the final few iterations.

Note that (68) is only a measure of convergence tu a local

minimum. We have said it before, but it bears repeating: there is no
guarantee that the point P satisfying (68) will yield the desired

absolute minimum ¢,
Of course, the user need not accept definiticn (68); he can ignore

the FINLIE convergence flag and impose his own convergence test on the
data returned by FINLIE after each iteration.

36

e T e e e E vy

L. Estimated Errors

In addition to computing the estimated standard deviation of the fit:

s = [ﬁg&]% ' (69)

FINLIE computes 815 the estimated astandard deviation of paramic Py
k=1,2,...N.

For linear least-squares, the conventional formula is
5
Sk = [Akk] s (70)
where

Akk = the k-th diagonal element of the inverse
of the unscaled matrix A.

Note that while s is nondimensional, Sy has the same dimensions as
Py

For nonlinear least-square fits, Eq. (70) should be viewed with a
healthy suspicion. Indeed, Celmipy¥ (Reg. 33 in the Bibliography) points
out that even in the linear case, the equation should be applied only
in "very limited special cases." Unfortunately, the alternative formula
that he develops for s, is a rather complicated one involving second-

order derivative terms -~ terms that so far we have managed to avoid.
The inclusion of these terms would mean more work not only for FINLIE -
which would be acceptable - but for the user, who would have to derive
and program some possibly horrendous expressions. The labor here

seems out of proporticn to its reward, since the 'crude'" error
estimates provided by (70) are usually not all that crude when the
search has converged to the proper point. Hence FINLIE returns these
estimates to the user and the user 1s expected te provide his own grain
of salt.

(Note that (70) uses only the diagonal elements of the inverse
matrix. In some situations, all of the elements of A™" are useful

. . -12
for error analysis. In these special situations, A s~ can be regarded
as the variance-covariance matrix. However, for nonlinear least

squares, we are pushing our luck in making use of the diagonal elements;
to try to assign any significance to the off-diagonal elements would

really be folly.)

Recall that FIWLIE transforms the elements of matrix A to the
scaled space 5, Eq. (50), and then replaces the diagonal elements by

1+x, Hence FINLIE actually obtains the paramic error estimates by the
relation

37

gt

& N

st I
SR

.
iy
14

s i i e b

= S el s

where

[{]

the k-th diagonal element of

s
Akk ~
the inverse of matrix {akn}’ Eq. (58)
(I felt there should be some compensation in the error estimate
formula for the presence of Marquardt's A in the equations. By a chain
of nonrigorous reasoning, I was thus led to insert the (1+)) factor in
(71). Since A<<l for a good fit, (1+)A) seems relatively harmless
sitting there.)

M. The Composition of FINLIE

So far, the word FINLIE has denoted an apparently monolithic
program. Actually, for reasons that seemed persuasive at the time,
FINLIE was written as an assemblage of six linked FORTRAN subroutines:

DUBLIN, LONDON, PARIS, BONN, MATINV, MERSO

only one of which - DUBLIN - is called by the user. "FINLIE", then,
is merely a convenient name for an ensemble of six subroutines.

[FINLIE is also the name of a permanent file (in Update format)
stored on the front end of BRL's Control Data Corporation computer
system. (At BRL, this system consists of two linked mainframes: the
CYBER 170/Model 173 and the CYBER 70/Model 76.) File FINLIE contains
five of the six subroutines: all but MATINV, which is already available
from a system library.]

The relationship between
(1) the user's program that calls FINLIE,
(ii) FINLIE
and (iii) the user's subroutine defining his equations,
and the inter-relationship of the six subroutines that constitute
FINLIE are all indicated in Figure 1. A vertical bar between two

subroutines in the figure indicates that the upper subroutine calls
the lower one.

38

e T i i i e b s o ot bt e

")
cOMMONY)__ _ | USER'S
/CAIRO / PROGRAM
DUBLIN ::

IMAan B
COMMON
DIFF ‘ TRANS. S
. 2

USER'S
ROMA

|

[
|
L

Fig. 1. FINDIE and the User: A Schematic

39

3
H
i
4
|
¢

All six subroutines of FINLIE are listed in the Appendix. Only
four of the six - the four "cities" - were written by the author; the
other two (namely, MATINV and MERSO) are general-purpose subroutines
to be discussed shortly.* With some minor exceptions in subroutine
MERSO (these will be spelled out), the FORTRAN used in FINLIE is a
"more or less standard" version of FORTRAN IV (alias FORTRAN 4, alijas
FORTRAN 66).

Converting FINLIE to a later model FORTRAN - say, FORTRAN 77 -
should be relatively uneventful. Onec possible difficulty is as follows.
FINLIE was written for a compiler that automatically retains the values
of entities defined within a subroutine but not linked to the calling
program. For such a compiler, subsequent calls to the subroutine will
find the previous values waiting. However, in FORTRAN 77 the SAVE
statement is available for specifying what if anything is to be retained;
hence some FORTRAN 77 compilers may not automatically retain local
values. In that case, it may be necessary to SAVE the arrays ALPHA and
BETA in subroutine DUBLIN.

DUBLIN is the interface between the user and FINLIE. The user must
write the FORTRAN program that calls subroutine DUBLIN with the

required input data. Hereafter, we will refer to (and think of) the
user's calling program as a main program, although it could itself be a
subprogram. Each time that DUBLIN is called by this main program,
DUBLIN activates the other subroutines of FINLIE, causing one iteration

of the search procedure to be carried out. That is, if the main program
submits point Pn»l to DUBLIN, DUBLIN will return to the main program

the next point Pn. Information and advice on writing the main program

and in particular on calling DUBLIN will be given in overwhelming detail
in Part III.

Subroutines LONDON, PARIS and BONN are buried within FINLIE, so that
their individuel purposes should be of little significance to the user.
However, the following features of PARIS can be noted from Fig. 1. If
the user is fitting a set of differential equations, PARIS calls a
numerical integration subroutine MERSO (of which more will be said
shortly) and MERSO in turn calls the subroutine - written by the user
and arbitrarily labelled ROME in the figure - that defines the
differential equations to be fitted. On the other hand, if the user
is fitting algebraic or transcendental equations, PARIS calls the user's
equation-defining subroutine ROMA directly. Both ROME and ROMA must
get additional information from PARIS through the labelled COMMON

*A reviewer of this paper questioned the Impiication that DUBLIN,
LONDON, PARIS, and BONN are the only "oities” in the sextuplet of
aubroutines. He went so far as to consult an atlas teo see 1} there 1s a
town, a village, «a hamlet or a crossroads by the name of MATINV op
MFERSO somewhere in the world. Apparently there fan't,

40

block NAPLES. ROME and ROMA may require additional information from the

user's main program, this can be passed through the labelled COMMON
block CAIRU. Abundant details on writing ROME and ROMA and on the

COMMON blocks will be given in Part III.

Subroutine MATINV is a general-purpose matrix inversion subroutine
borrowed intact from the computer library here at BRL. Upon return from

MATINV, the input matrix has been replaced by its inverse.

Subroutine MFRSO is a general-purpose numerical integration
subroutine based on a method proposed by R.H. Merson of Australia. The

method is a fourth-order member of the Runge-Kutta family, requiring
five function evaluaticns at each integration step. The subroutine

adjusts the integration step size automatically to obtain a predefined
accuracy. (All of this is transparent to the FINLIE user.)

The computar library at BRL contains a subroutine MERSON (see

References 11 and 32 in the Bibliography) for performing Merson
integration. Subroutine MERSO is identical to MERSON with the exception

of two statements. Firstly, where MERSON has
DIMENSION T(100), G(100), S(100),

MERSO has increased the thre:e dimensions to 409 each. Secondly, where
MERSON has

IF (NT.LE.100) GOTO 100,

MERSO compares NT with 400. The reason for these changes is as follows.
The size of the three arrays T, G and S above must equal or exceed

N5 = N2 + NA (72)

[

that is, the number of differential equations (N2) plus the number of
influence equations (NA). MERSON requires N5 < 100. In my largest

applicaticon of FINLIE so far, N5 exceeded 100 (was, in fact, 368).
Hence the minor surgery that altered MERSON into MERSO; the maximum

permitted value of N5 is now 400. This value of 400 appears not only
in MERSO but in PARIS, where it is the declared dimensions of arrays

U and DU (see the Appendix). Hence the user can change the upper limit
on N5 by

{1} changing the dimensions of U and DU in PARIS;

and (ii) changing the 400 in the PARIS statement that currently
reads:

IF (M5.LE.400) GOTO 24

and (iii) changing the two precviously mentioned statements in

41

MERSO:
DIMENSION T(409), G(400), 5(400)
and IF(NT.LE.400) GOTO 100

Note that a ''nonstandard" FORTRAN function appears on the line above
statement 410 in MERSO:

H = SIGN1(H) * HMI

Here SIGNl is the signum function; if it ic not recognized by the
user's FORTRAN compiler, the abtov: scatement can be replaced by

IF(H.NE.0.) H=S GN(1.,H)*HMI
The use of multiple arithmetic and logical assignment statements in
MERSO may also be unacceptable to some compilers. In a multiple
statement of the form
VN = -+ = V2 = V1 = expression,

the assignments are carried out from right to left:

V1
V2

expression
V1, etc.

It should be pointed out after all this exposition on MERSO that
when the user is fitting algebraic or transcendental equations rather
than differential equations, MERSO is not needed and may be removed
from FINLIE.

FINLIE was written for BRL's CDC computer system for which the
single precision of real numbers is approximately 14 decimal digits.
So %ar, this has proven adequate for all our FINLIE applications. If
the user is working with a machine whose single precision is signifi-
cantly less than 14 decimal digits, he may have to add some double-
precision declarations to the subroutines of FINLIE. One socurce of
trouble is the possibly crratic behavior of ¢ near a minimum, due mainly
to round-off noise. Hence a likely candidate for double precision
is array GAMMA in subroutine DUBLIN (and its dummy version A in
subroutine MATINV). A more complete list of variables that may require
double precision includes:

in DUBLIN: EA, EB, EPS, GAMMA
in LONDON: EP, EPS, RSQ
in PARIS: RM, RSQ
in MATINV: A, Tl
In extreme cases, the user can simply double-precision everything in

42

I - SN

sight; this may be inefficient in terms of storage, but it could save
wear and tear on the user.

IIT. OUTSIDE FINLIE: WHAT THE USER MUST
DO FOR FINLIE

Assuming that the FINLIE user is given a set of equations of the
ferm (1) or (2) - or equations that can be put into one of those forms -
the first task the user must perform is to derive the associated
influence equations, as indicated in parts C and D of Section II.

The next task is to write a FORTRAN subroutine defining all these
equations - the original set and the influence equations - in a manner
acceptable to FINLIE. The rules for constructing this subroutine are
slightly different for sets (1) and (2). (We assume in what follows
that the reader has some familiarity with - though he need not be an
exp§rt in - some version of FORTRAN equivalent to or newer than FORTRAN
Iv.

A. ROME: The User's Subroutine for Fitting Differential Equations

The first three statements of ROME have the form:

SUBROUTINE ROME (N5, XE,U,DU)
DIMENSION U(NS), DU(NS)
COMMON,/NAPLES/PAR (40) , FLAG(60)

It should be noted that the only name in the above three statements
that the user is not allowed to change is NAPLES. All other names,
including ROME, may be replaced by other legal FORTRAN names of the
user's choice. (0f course, the distinction between integer and real
names should be maintained.)

ROME is called by MERSO (see Figure 1) and hence the nature of the
four arguments of the SUBROUTINE ROME statement has been decreed by
MERSO. The first three arguments are input to ROME (from MERSO):

NS = the number of equations to be defined in ROME: N2
(first-order differential equations) plus NA (influence
equations). Thus for sample set (3), the value of N5
is 2 + 8 = 10, Note, however, that this argument is an
integer name, not an integer constant. As certain
arrays are currently dimensioned, N5 cannot exceed 400
(see the pertinent remarks in section 1I1(M)).

43

i x . . g b

. ———— e e

.
-

AN A | LAY a4 v " m NERATIRN.r ! T o o ey empRRTRY Nt o T

. X, the independent variable value at which the N§
equations are to be evaluated. The argument, of course,
must be a real name, not a real constant. If the
independent variable does not appear in any of the

guations, then argument XE will not be used in the body
subroutine ROME,

XE

e
0

U = the vector of N2 dependant variables and NA influence
coefficients, where

y; = U, }
(73)
Djk= U(J + K*N2)

[J2j=1,2,..N2
Kaks1,2,..N23]

Thus for sample set (3), where N2=2 and N23=4, we have

[
<

u(1)

N1
u@ = vy,
UB) = Dyy = dy,/%,
UG = Dy = 3y,/dy,,
UGS) = Dy, = 3y,/3y,,
U(6) = Dyy = 3y,/3¥,,
U = Dy, = dy /3
U®) = D, = dy,/dc,
U = oy, = dy/ac,
U(10) = D, = 3y,/ec,

The final argument of ROME is an output (to MERSO):

DU = the derivative vector at the current value XE of the
independent variable, where
DU(J) = du(J)/dx (74)
[J=1,2,..N5)

Additional input to ROME comes from PARIS via the labelled
COMMON block NAPLES. The one hundred elements of the NAPLES block are
as follows:

PAR = a vector of the current values of the N3 parameters
(not paramics), where N3 < 4C. For sample set (3),

44

§
%
f

PAR(1)
PAR(2)

and the remairing 38 elements of PAR are undefined.

€1

2

c

FLAG = a vector of N23 flags (N23 < 60) associated with the
N23 single-round paramic set Q, Eq. (12). That is,
the first N2 elements of FLAG are associated with the
N2 initial conditions and the remaining N3 elements
of FLAG are asscciated with the N3 parameters. The
value of FLAG(J) is

(1) zero if the value of the corresponding
paramic q; is fixed;

or (ii) 1.0 if the value of q. is to be adjusted
by the fitting processS.

For sample set (3), we have

FLAG(1) = flag for Y50
FLAG(2) = flag for Y20
FLAC(3) = flag for ¢y
FLAG(4) = flag for c,

and the remaining 56 flags are undefined.

Note that PAR and FLAG are inputs to ROME from FINLIE; when
writing ROME, the user assumes that the two arrays already contain
their proper values. In the case of the initial condition flags,
these values may change from round to round. For example, in our
tri-round situation, we might decide to make a computer run with le

for round El and Y20 for round E3 fixed at specified values. Then
FLAG(1) = 0.0, 1.0, 1.0
FLAG(2) = 1.0, 1.0, 0.0

for rounds El, E2 and E3, respectively. FINLIE will automatically
change the values of FLAG(1) and FLAG{2} to match the round whose
measured data is currently being fitted. Of course, FINLIE can't

uess what the user wants to do; it must be told. FINLIE can only
§ef1ne PAR and FLAG on the basis of ccrtain inputs given to it by the
user's main program. These inputs will be discussed in section ITI(C).

The dimensions of PAR and FLAG are arbitrary to this extent: they
can be changed in ROME if the user is willing to make all the
associated changes in FINLIE. To save space, 1 leave the nature of
such changes as an exercise for the interested reader. The simplest

45

course is to make no changes if N2 < 40 and N23 < 60.
After writing down the first three statements of ROME, the user
is ready to encode the body of the subroutine: the statements defining

the N5 elements of output array DU. Consider, for example, system
(3). For convenience, we repeat here the oxiginal equations:

y;! = Uy,
vy = me(lecyyrdy,
and the associated influence equations (Table III-A):

, 2
(D117 = =Dy /v,

(D,)" = -cy(i+2e,y,)D,,

(01 = -Dyyfyy’

(Dy,)" = -c (1+2c,y,)D,,

(0 = Dygfyy

(D5)" = -ey(Is2e,y)Dy5 - (+cyy,)y,
(01 = Do/’

(D,g) = ~cy(1+2c,y,)Dy, - 1 (r,%)

For these equations, a likely version of subroutine ROME is given in
Table VI.

46

T T o a7 1= Y o« e

mw L LT — e TN

Table VI. Subroutine ROME for System (3)

SUBROUTINE ROME (NS, XE,U,DU)
DIMENSION U(NS),DU(N5)
COMMON /NAPLES/ C1,C2, BLANK(38),FLAG(60)

vV = U(2)
DU(1) = 1./V
Al = C2#V

DU(2) = -Cl%(1. + Al)}*V
A2 = DU(1)*+*2
A3 = Cix(l. + Al + Al)
IF (FLAG(1) .EQ. 0.) GOTO 10
DU(3) = -A2%U(4)
DU(4) = -A3*U(4)
10 IF (FLAG(2) .EQ. 0.) GOTO 20
DU(5) = -A2+*U(6)
DU(6) = -A3+U(6)
20 IF (FLAG(3) .EQ. 0.) GOTO 30
DU(7) = -A2+U(8)
DU(B) = -A3+U(8) - (1. + Al)»V
30 IF (FLAG(4) .EQ. 0.) GOTO 40
DU(9) = -A2*U(10)
DU(10)= -A3+U(10) - CL*VV
40 RETURN
END

Note that in COMMON/NAPLES/ I opted to write the forty-element
parameter set in the form

Cl, C2, BLANK(38)
since only the first two of the forty elements have any meaning. I
could just as well have written PAR(40) in the COMMON statement and

used YAR(1) and PAR(2) instead of Ci and C2 in the body of the
subroutine., Note also that I dimensioned FLAG as 60 even though the

last 56 elements are meaningless. This was a courtesy to our CDC

47

FORTRAN compiler, which likes all COMMON blocks of the same name
(NAPLES in this case) to have the same length. The compiler doesn't
insist when you break this rule, but it comments on your bad form.

Because ROME will be called many times by MERSO during the course
of the numerical integration, the user should take the time to make
ROME as efficjent as practicable. For large and labyrinthian systems
of equations, a worthy ROME isn't built in a day.

One of the aids to efficiency in ROME is the FLAG vector. Note
that if any paramic value is fixed during a computer run (that is, if
the associated flag value is zero), the influence equations for that
paramic need not be calculated. Hence the FLAG vector can - and in my
opinion should - be used as indicated in Table VI to avoid these
unnecessary calculations. The general rule is that if FLAG(J) is zero,
then ROME need not evaluate DU(LA) through DU(LB), where

LA = (J x N2) +1
LB = (J x N2) + N2 = LA + (N2-1).
;v: . 0f course, if the user is convinced that he will never, ever want to

hold fixed the value of some paramic, he can omit the corresponding
IF-statement from ROME.

Some systems of equations may involve constants whose values are
always fixed (that is, never adjusted by FINLIE) and yet these values
may change from run to run. It would be possible - but not too bright -
to handle suchk 1 constant as a fixed parameter: a parameter whose
associated flag is always zero. A better approach is to pass any such
constant directly from the user's main program to ROME through a new
. . labelled COMMON block (see block CAIRO in Figure 1). Of course, if
9 : a constant will never change from run to run, it need only be defined
" : within ROME.

A final, rather minor comment: Sample set (3) is one of those
cases where the input argument XE is not used in the body of subroutine
ROME, simply because the independent variable does not appear explicitly
in the N5 equations of this example.

¥

B. ROMA: the User's Subroutine for Fittggg Alggbraic or Transcendental
Equations

Many of the comments in the previous section concerning ROME apply
to ROMA as well. Hence, if the reader has skipped over that section
because his interest in fitting differential equations is minimal,
he may have missed something noteworthy. Or possibly not.

T b T S e R

The first three statements of ROMA have the form:

48

e s . i Zm e PR TR - .~ 3\ % S e e ———— |

.-

SUBROUTINE ROMA (COND,XO, XE,U)
DIMENSION COND(n2), U(n5)
COMMON/NAPLES/PAR (40}, FLAG(60)

The first three arguments in the SUBROUTINE statement are inputs
(from PARIS):

COND = a vector of N2 current initial condition values. For
sample set (4),

COND(1)

Y10

COND(2) = Y20

For multi-round situations, the initial conditions
change with the round as well as with the current state
of the fitting process. FINLIE supplies the proper
COND vector to ROMA automatically.

X0 = Xq» the independent variable value at which the initial
conditions apply. (This one value must apply to all
rounds.)

XE = x, the independent variable salue at which the equations

are to be evaluated.

The final argument, U, is an output vector defined exactly as in the
previous section for subroutine ROME.

In the DIMENSION statement, n2 and n5 denote the values of N2 and NS,
respectively. (Actually, on the CDC system and on most other computers,
a one-dimensional argument array in a subroutine need not be declared
at its maximum size; the value 1 is adequate.)

The labelled COMMON block NAPLES brings to ROMA the arrays PAR
and FLAG, defined in the previous section.

The body of subroutine ROMA consists of the statements defining
the needed elements of array U. Consider, for example, system (4].
For convenience we repeat here the original equations (4) and the

needed influence equations (Table III(B)):

yl = le - C2(X-X0) + (b/Cl)(U-l)
y, = (bu- cz)-1
D11 = 1,
2
D, = - (U-l)/(clyza)

49

Dz = (b/clz)[l-u+c1(xwx0)u}
D14 = (u-l)/c1 - (x-xo)
where
u = exp [clix—xo)]
b o= (yzo)‘1 ‘e,

For these equations, a likely version of subroutine ROMA is given in
Table VII.

Tabie VII. Subroutine ROMA for System (4)

SUBROUTINE ROMA (COND, X0, XE, U)
DIMENSION COND(2),U(10)
COMMON /NAPLES/ C1,C2,BLANK(38), FLAG{60)

TO = COND(1)
VO = COND(2)
XA = XE - X0
Z = EXP(C1*XA)
B=C2+ 1./V0
U(1) = TO - C2%XA + B*(Z - 1.)/C1
U(2) = 1./(B*z - C2)
IF (FLAG(1; .NE. 0.) U(3) = 1.
IF (FLAG(2) .NE. 0.) U(5) = (1. - Z)/(C1l*VOwx*2)
IF (FLAG(3) .NE. 0.) U(7) = B#(1. - Z + C1*XA*Z)/(C1**2)
IF (FLAG(4) .NE. 0.) U(S) = (Z - 1.)/C1 -~ XA
RETURN
END

As discussed in section II(D), FINLIE does not require expressions
for the influence coefficients Djk when j is greater than Nl1. Hence

in this sample ROMA, where Nl=1, the D2k equations (namely, the equations
for U(4), U(6), U(8) and U(10)) are simply omitted from the subroutine.

As with ROME in the previous section, the FLAG array in ROMA is

used to aveid calculating Djk when the value of paramic Ay is fixed.

Also as with ROME, any needed ''changeable constants'" can be passed
directly from the user's main program to ROMA through, say, the
labelled COMMON block CAIRO.

50

L s Bt e s S L«

I e e ey

C. CallingSubroutine DUBLIN

After the user has written his subroutine defining the equations
to be fitted, his next task is to write a program unit - we assume a
main program - that utilizes FINLIE. Before discussing this main
program as a whole, we will concentrate on one statement within that
main program: the CALL DUBLIN statement.

This statement is the link between the user and FINLIE. It can be
written in the form

CALL DUBLIN (ROME,NF,N1,N2,N3,N7,N8,NR,NM,XO0,
X,Y,F,NW,W,P,RL,NC, YC,R,RS, EPS,
SIG,EK,NS)

where all integer names happen to start with the letter N, The first
fourteen of the twenty-five arguments are inputs.

(1] ROME is the name of the subroutine (written by the user) that
defines the equations to be fitted (See sections
II1T1(A-B)).

The values of the remaining thirteen input arguments must be established
in the user's main program before DUPLIN is called. These values will
not be changed by FINLIE; hence actual values rather than names may be
used for arguments [2] through [8], [10] and [14] below.

[2] NF is a flag that indicates the nature of the equations

to be fitted:

NF=0 if the fittiag equations are algebraic or
transcendental (System (2));

NF=1 if the fitting equations are differential
equations (System (1)).

[3] N1 is the number of measured dependent variables in the
system, where

1 <Nl <10 (75)

(The upper bound on N1 - and the upper bounds indicated
for some of the other arguments defined below - can be
increased only by delving into FINLIE.) NIl must have
the same value for each round; FINLIE insists that the
same dependent variables be measured for each round used
in the fitting process.

[4] N2 is the total number of dependent variables in the system,
where

51

b TR T v iy,
wee Bhanan b 0o I L e TR

Nl < N2 « 20 (76)

[5] N3 is the maximum number of parameters (not paramics) whose
values can be determined from the fit, where

0 < N3 < 40 7n

I use the word "maximum'' above because the actual number
of parameters to be determined in the course of a computer
Tun may be less than N3, The user specifies (by argument
F, to be discussed below) which, if any, of the parameters
and initial conditions are to be held fixed at their input
values and which are to be adjusted by FINLIE during the
run. Input N3 is the total number of parameters: those to
be adjusted plus those held fixed. (If input N3 is zero -
the lower limit in inequality (77) - then presumably

thers is at least one initial condition to be determined;
otherwise there would be no reason for running the
program,)

6] N7 is the number of rows declared in the user's main
program for the two-dimensional arrays Y, W and R defined
below as arguments [12], [15] and [20], respectively.

As we will _ee, these three arrays serve as Nl by N4
matrices. At first glancs, ther, it might seem that
N7=N1. However, the user may not want to restrict his
main program DIMENSION statement to the current values

of N1 and N4. It is often more convenient to dimension
arrays at their largest anticipated sizes. For example,
in our recurring case where N1=1 and N4=16, the user
might want to dimension arrays Y, W and R as, say (2,50)
rather than (1,16). FINLIE will go along with this sort
of thing, but it wants to be told about it. Thus if the
user dimensions Y, W and R as (2,50), he must set N7
equal to 2. 1In general, then, N7 > Nl1. (The declared
column dimension for the three arrays - say, 50 - is not
needed by FINLTE. The declared row dimension is T
sufficient - assuming the computer stores matrices in the
usual way, that is, by columns - to maintain notational
row-column agreemert between calling program and
subroutine, Neither is FINLIE interested in thke declared
dimensions of its vector arguments.*)

*Iv. FINLIE, I have declared 1 as the lust (right-moet) dimemsion of
subroutine dummy argument arrays. This ia fairly common FOKRTRAN 4
practice, but FORTRAN 77 prefers an asterisk: Y(N7,a) instead of
Y(N7,1).

52

[7] N8 is the number of rows declared in the user's main
program for the two-dimensional array YC defined

o below as argument [19], Array YC serves as an

8 | N2 by N4 matrix; hence N8 > N2. (See the comments

for argument [6] above.)

(8] NR is the number of data rounds to be considered
simultaneously, where

B, Y vy ey

1 < NR < (60-N2)/N2 (78)

The right-half of this double inequality may seem a
rather strange condition to spring upon the reader.
Until now, no limit has been implied on the number of
rounds. The basic condition (somewhat concealed in
(78)) is

N < 60 (79)

where N is the total number of paramics, (NR x N2) + N3.
Condition (79), like the limits on N1, N2 and N3, is a
result of arbitrary DIMENSION decisions that had to be
macde when constructing FINLIE. Since N is not itself
an input to DUBLIN, I have simply converted (79) to the
equivalent form (78). By satisfying (78), the user can
be sure that (79) is also satisfied. For sample set (3)
or {4) we must have NR < (60-2}/2=29. For the
associated data of Table I, we have NR=3, well below the
maximum permitted. Recall that the data for an
individual round sclely determine the initial conditions
for that round, but combine with the data from all the other
rounds to determine the parameters.

e e e U L MR TIPS A TR W

PR

P

o s o 7 i

{9] NM is a vector of NR elements, where

NM(J) = the number of data points R, (that is, the
number of independent variable values x, at

which measurements were taken) for the J-th
rounrd.

Thus for the sample data of Table I, the user's main
program must set

NM(1) = 5
NM(2) = 6
NM(3) = 5

FINLIE determines N4, the total number of data points,
by summing the NM components:

R O L (PO g D e

"-MNAMJ,,,; L N o e s A e i R i etk ot I e e

NR

)
N4 = 2 , MG (80)
J=1

The user must insure that N4 satisfies the inequalities

N < N4 < 1000 } (813
N4xN5S < 10000 , !
;o 5 and that
. . N1 x (MAX.ELEMENT OF NM) < 200 (82)
E N2 x (MAX.ELEMENT OF NM) < 400

. SN Again, these restrictions are the result of arbitrary
| S DIMENSION statements in FINLIE.

i SR [10] X0 1is the independent variable point x, at which all

| R initial conditions apply. The same x, must apply to
*f‘ -5 all rounds.

. 1

! [11] X 1is a vector of the N4 independent variable values

xm at which measurements were taken. The first NM(1)

values in X are the first-round values, in increasing
order:

X(M-1) < XM), M= 2,3,...NM(1)

The next NM(2) values of X are the second-round values,
also in increasing order among themselves:

k' .
Y E X(M-13 < X(M), M - NM(1) = 2,3,...NM(2)

and so on. For the Table I data, we have

XM = X, M= 1,2,...16.
[12] Y is an N1 by N4 matrix of measured dependent variable
values, where
Y(1,M) = the measured value of y; at X (M)
For the Table I data, we have Y(1,M) = 71m, m=1,2,...16,
[13] F is a vector of N flags associated with the paramic point

P (argument [16] below), where

7T Ty e,

54

[14]

NW

MRS A Ecadal | o Tabied

0.0 if the input value of P(J) is to
be held fixed;

F(J)

1.0 if the input value of P(J) is to be
adjusted by the fitting process.

is & weight flag associated with matrix W (argument [15]
below).

NW = 0 if the user's weights (already stored
in matrix W) are to be used by FINLIE;

1 if all weights are unity (in which case,

the user need not store 1.0's in
matrix W before calling DUBLIN).

Recall the comments in the vicinity of Eqs. (8) and (9)
regarding weights. The important point is that the
"easy'' way out - assigning unit weights, merely by
setting NW=1 - will often lead to a poor fit. Give
some minimum consideration to the possibility of
unequal uncertainties in the measurements, particularly
when more than one variable has been measured (N1 > 1).

The fifteenth argument of DUBLIN may or may not be defined by the
user before DUBLIN is called:

[15]

¥

is the N1 by N4 matrix of weights associated with input
Y (argument {12] above). The user has a choice to
make. If each of the N1 by N4 measurements in matrix
Y can be assigned unit weight; that is, if

W(I,J) = 1.0

then the user neced not define the W array. Simply set
NW (argument {14] abecve) to 1. If, on the other hand,
the user decides that one or more of the weights must
differ from 1, then the user must define ti:e entire
array, subject to the conditions that each weight he

nonnegative and that

W,y = [1-/Y(I,J)2]d

See the comments near Eqs. (8) and (9).

The next three arguments of DUBLIN are input/output. That is, the
user must define them before the first CALL DUBLIN =tatement, but

FINLIE will change their values.

55

WO Y " .
¥ w--\mme. K o S S e e e

{16] P is the current N-dimensional paramic point P, Eq. (5),
where

P(1), - « « .« « .« . . P(N2) first round initial

conditions,

L]

second round initial
conditions,

"

P(I+N2),. P(2#N2)

last round initial
conditions,

P(li(NR—l)*NZ) « . . P(NR#N2)

#

n

P(1+NR*N2) P(N) the parameters.

Thus for sample system {3) or (4) and for tri-round data,
the eight elements of P are given by Eq. (10). Clearly,
P is the essential argument in the CALL statement; the
other arguments play a necessary but supportive role.

As indicated in Part 1 of this repert, an effort should be
made to find suitable starting values for the elements

of P. Not all first estimates will lead to the right
answer. Each time the prcgram returns from DUBLIN,

array P will contain an updated point. More precisely,
the first call to DUBLIN is a special situation and P is
unchanged upon return. Thereafter, each call serves to

ugdate P. For more on this first call, see argument
[18] below. In general, then, each DUBLIN call after the

“irst advances P cne step on the road to the solution.
DUBLIN should be called repeatedly (say, in a DO-loop)

until convergence is achieved. Not all elements of P
will necessarily change with the iteration. If input

F(J) is zero (see argument [13] above), then the original,
user-assigned value of P(J) will be maintained no matter

how many times DUBLIN is called.

[17] RL is a Marquardt argument. Before DUBLIN is called the
first time,

(i) Set RL = 0.0 if the Marquardt algoritnm is to be

omitted from the fitting process
(that is, if the user wants FINL'E

to fit by differential corrections,
Eq. (56}, rather than by Marquardt

interpolacion, Eq. (58)). In this
case, RL will remain at zero.

(ii) Set RL = 1.0 if the Marquardt algorithm is ty be
used. Upon the first return from

56

i v atedrss S o R oy

DUBLIN, RL will have the "starting"
A value of 0.01. (On subsequent
calls to DUBLIN, the input val ¢ of
RL is immediately divided by ten;
hence the true starting va.ae of)
is 0.001, as indicated in Eq. (61)).
Upon the second and subsequent
returns from DUBLIN, RL will have the
value of A used to obtain the point
returned in array P. Note that
since FINLIE changes RL, a name (not
the value 1.0) must be used in the

CALL list.

[18] NC is a "first call" flag. The user must set NC=0 initially.
This value alerts FINLIE to the fact that it is being
called for the first time. FINLIE behaves differently
on this first call than it does on all subsequent calls.
In particular, on the first call, FINLIE

(i) sets all elements of argument W to unity if
NW=1;
(ii) sets argument RL to 0.01 if the input RL is 1.0
(that is, if Marquardt's aigorithm is to be used);
(iii) determines the number of paramics to be adjusted
g (ths total number minus the number of paramics
g held fixed) and stores this value batk in
' - f argument NC (hence use a name, not the integer
' zero, for the '"first call" flag in the CALL list);
S {iv) evaluates the next five arguments in the CALL
‘:__ij; list (YC,R,R3,EPS and SIG, all described below)
RS at the input point PO.

Note that FINLIE does not update the input point Py on
this first call: PO goes in and P, comes back. The

paramics are updated only on the second and subsequent

1 calls.

® = The remaining seven arguments of DUBLIN are outputs, evaluated at
T the current value of VP,

| S : [19] YC is au N2 by N4 matrix of computed dependent variable
| S values, based on the current point P, where

YC(J,M) = the computed value of yj at X{(M)

Thus for the Table I data in our cxamples,

57

fadadadinh i N Y TR TR R PRI m

YC(LM) = v (xm,P)
YC(2,M) = y, (x,P)
[m=1,2,...16]
When fitting differential equations, FINLIE ohtains the
YC values by numerical integration of svstem (1); when

fitting algebraic or transcendental equations, FINLIE
cbtains YC directly from the equation set (2).

{20] is an N1 by N4 matrix of residuals of the fit, where

P

R(I,M) = Y(I,M) -~ YC(I,M) (83)

[21] RS 1is a vector of N1 nondimensional error measures
associated with the N1 measured dependent variables,

wherc
RS(I) = that part of ¢ (see Eq. (7) and argument
[22] below) that can be attributed to the
fit on y.
i
N4
- Z W RELM (84)
M=1

[22] EPS is e¢(P), the nondimensional sum of the weighted squares
of the residuals of the fit (Eq. (7)), where

N1
EPS = E RS(I) (85)
I=1

If the Marquardt feature is being used (see argument
[17)), then after the first call, DUBLIN should return an
EPS no greater than the input EPS.

[23] SIG is the estamated standard deviation of the fit
(Eq. (69)), where

SIG = [-—N-AE}:)‘-S'N"] (86)

[N [24] EK is a vector of crude estimates of the errors in the N
] paramics of point P, where

‘ f_? EK(K) = the estimated standard deviation
' in paramic P(K)

53

S T N NI

s m s . _ N " i N Lo) o ‘

s ddbiide s Akl s ™~ - S
\ _ ; L R

_sk
[2%] NS is a convergence flag. Before retuining to the user's
main program, FINLIE will set

as defined in Eq. (71)

NIS=0 if the process has not yet converged by criterion
(68), but there is still hope. FINLIE is saying
in effect, '""Nothing obvious has gone wrong yet
so give DUBLIN another call."

NS=1 if all output arguments (except this one) are
invalid. Usually this happens when some input
argument is invalid. (FINLIE performs a few

simple checks to spot invalid inputs.) If
DUBLIN returns an NS value of 1, the main program

should take some special action (e.g., STOP).

NS=2 if the latest iteration has satisfied convergence
criterion {68). If the user is willing to accept
this criterion, his main program should stcp
ralling DUBLIN when NS=2, 1f the user is

imposing some more stringent convergence
criterion of his own, he should regard NS=2 as

having the same meaning as NS=0.

To illustrate the use of these twenty-five arguments, consider our
sample systems (3) and (4) with three-round data. Assume that in the

calling program, arrays Y, W, R, and YC have been dimensioned as
(2,50). Then for system (3) and subroutine ROME, we can write

CALL DUBLIN(ROME,!,1,2,2,2,2,3,NM,0.0,X,Y,F,1,W,P,RL,NC,
YC,R,RS,EPS,SIG,EK,NS)

For system (4) and subroutine ROMA, only the first two arguments above
are changed:

CALL DUBLIN(ROMA,O,...)

D. Writing the Program that Calls DUBLIN

In this final section, a typicazl main program for utiliizing FINLIE
is broken down into six steps. Some of these steps are essential,

others are optional.

Step (1). Dimension all ten arrays appearing in the CALL DUBLIN
statement:

DiMENSION NM{nr), X{(nd4), Y(nl,nd4), F(n), W(nl,nd),
P(n), YC{n2,n4), R{nl,n4), RS(nl), EK(n)

59

where egmall-letter dimensions above denote constants no less than the

values of the corresponding capital-letter names. That is, nr > NR,
etc. As we have mentioned, it is often useful to dimension arrays larger

than their current working slzes. For example, in our tri-round test
cases (3) and (4), we might write: :

DIMENSION NM(S), X(50), Y(2,50), F(8), W(2,50), P(8), YC(2,50),
R(2,50), R5(2), EK(8]

This would allow for up to five rounds (nr=5), fifty measurement points
(n4=50) and two measured variables (nl=2). Note that the values given to

the row sizes nl and n2 in this DIMENSION statement become the values
of arguments N7 and N8 when DUBLIN in called. On the other hand, the

dimensions allotted above to the vector arguments and tc the columns
of the matrix arguments are of no interest to FINLIE.

Step (2). Declare in an EXTERNAL statement the user subroutine
whose name will be passed to DUBLIN. Thus for sample set (3) and the
corresponding ROME (Table VI), we would write

EXTERNAL ROME
and similarly for set (4) and ROMA.
Step (3). Establish initial values for seven DUBLIN arguments:
NM, X,Y,F,P,RL,NC
and if necessary, for an eighth argument: W. There is no standard

coding for obtaining the values of these arguments; the technique will
vary with the situation. For example, initial estimates for array P

might be read in at this stage, or they might be cbtained by calling
some subroutine whose sole purpose is to derive adequate estimates

from the data. For simplicity, let's assume that in our main program
for sample set (3) or (4},

(a) the arrays NM,X,Y,F and P are read in;

{b) RL and NC are defined explicitly:

1.0
0

RL
NC

noun

(c) array W is not defined (since argument NW will be 1 in
the CALL statement).

Note that the values of the remaining nine input arguments:

NF, N1, N2, N3, N7, N8, NR, XO, NW

60

s e g —
T e S W RPN vy . T TR T

can be established in the CALL DUBLIN statement itself,

Step g4!. Write column headings for everything of interest that will
be determined at the end of each iteration. Of course, ''interest" is
subjective, One user may want a detailed print-out of the progress

from PO to 5; a less inquisitive user may care only for what pertains to

the final, converged point. Personally, for each iteration, I like to
see:

(a) the iteration number i (i=0,1,2,...)

{b) the N elements of point P,

(c) the value of Marquardt's X required to produce P,

(d) the residual function e(Pi) and/or the standard deviation
of the fit S(Pi)'

These desiderata, then, determine my column headings. (Of course,

if what I want to see can not be conveniently spread across a single
output page, then some of the results of each iteration have to be

saved - by storing them in additional arrays - so that they can be printed
later on a second page.)

Step (5). Program the DO-loop that calls DUBLIN. For our sample
set (3), we might write:

DO 60 K=1,26
CALL DUBLIN (ROME,1,1,2,2,2,2,3,NM,0.0,X,Y,F,
1 1,wW,P,RL,NC,YC,R,RS,EPS,SIG,EK,NS)
NPOINT=K-1

WRITE(6,100)NPOINT,P,RL,SIG
IF (NS-1) 60,70,80
60 CONTINUE
WRITE (6,101)
C---vmne- The above is a warning that the process has
C~------ failed to converge in 25 iterations.
(G0TC 80
70 WRITE (6,102)
C —nmmeeee The above is a warning that something is wrong.
STOP
BO CONTINUE

In the above code, DUBLIN will be called until output argument NS
equals 1 or 2, or until the DO-loop variable K exceeds 26, whichever
occurs first. (The limit 26 - that is, 25 iterations - is arbitrary;
1 is not enough, 1010 is too many.) After each iteration, we obtain a
print-out - presumably under the proper column headings - of NPOINT
(the number of iterations), the N elements of the current point P, and

61

ey e — -

finally the A and s values at the current point, The first line of
this print-out, where NPGINT=0, gives the initial estimated values of
the paramics. If NS=1 at the end of any iteration, the program stops;
otherwise the program moves eventually to statement 80. Note: the
principal resuits of the fitting process are the final printed values
of the N paramics, All else is in a sense window-dressing.

Step (6). Write anything slse of interest. My usual scheme is as
follows:

(a) aligned under the final paramic values (but with one
line skipped for clarity), I write the corresponding crude error
estimates contained in array EK. (If flag array F is of interest, the
elements of F can be written on the next line, again aligned under the
corresponding paramic values.)

(b) on a new output page, I write the values stored in arrays
X, Y, YC, R and (possibly) W,

one line for each X value. (In multi-round fits, I skip a line for
clarity at the end of the data for each round.)

(c) wherever convenient, I write the suitably latelled values
of some or all of the following:

N1,N2,N3,N4,N,NC,NM,NR, NW,RS, X0

IV. SUMMARY

The recent patter of tiny details has very likely blurred the big
picture. To review, then, assume that the reader has a problem
reducible to fitting a set of equations of the form (1) or (2) to
measuied data., Further assume that this reader--an adventurous spirit--
decides to use FINLIE to solve the nroblem. Then this invoker of FINLIE
must:

(a) derive the related set of influence equations (Section J1, C
or D);

(b) write a FORTRAN subroutine that lists the original equations
and the related influence equations (Section III, A or B);

(c) write a FORTRAN main program (Section III, D) that will:

(i) furnish adequate initial estimates of the parameters and
initial conditicns;

(ii) specify which, if any, of these estimates are to be
adjusted by FINLIE;

(iii) assign weights to the measurements (if the weights are
not all equal);

(iv) call subroutine DUBLIN (Section III, C) in a DO-loop;

62

(d) submit the entire program (main, FINLIE and equation-defining
subroutine) to the computer and pouder the ensuing ocutput.

This output will take one of four forms, listed in decreasing
order of desirability: :

(1) convergence to the right answer;

(2) failure to converge in the specified number of itera-
tions (sometimes achieving an apparent oscillation about an answer);

(3) divergence (the program crashes);

(4) convergence to the wrong ansver,

Result (1) above--convergence to the right answer--should prevail
when all of the following hold:

{a) the measured data are a represzntative sample of the
total behavior they are meant tc define. (An elementairy violation
would be measurements taken every T seconds on a periodic variable of
period Tt.)

(b) the measured data are free of gross errors.

(c) "least squaves'" is a suitable fitting criterien. (This
implies that the measurement errors possess certain statistical traits;
however, the degree to which the errors must possess these traits in
order to be considered amenable to least squares is a matter of judg-
ment.)

(d) the fitting equations with their associated parameters
are appropriate for describing the measured events,

(e) the initial paramic estimates are not too far from the
right answer. (What constitutes ‘"too far" vavies with the nature of
the fitting equations and the measured data.)

V. ACKNOWLEDGEMENTS

We have already acknowledged our debt to Marquardt, whose
algorithm [see References 1 to 7 in the Bibliography] has been incor-
porated into FINLIE., This algorithm is applicable whether we are fit-
ting differential equations or algebraic/transcendental equations.
FINLIE is also indebted--especially in fitting differential equations--
to the following sources:

(a) Theodore R. Goodman of Oceanics, Inc., Plainview, New York,
who first called to our attenticn (in a private communication i1 1967)
the feasibility of fitring ordinary differential equations--rather thsn
their pseudo-solutions--to observed data. Goodman's technique [see
References 8 to 11 in the Bibliography] differs from FINLIE's mainly in
the manner in which the influence coefficients are obtained.

63

S i - . i ik i b i 120 i Kbt AR O A S M it ot bt

T e e e e SR
e clio = o g TR W RO

(b) Gary T. Chapman and Donn B. Kirk of NASA Ames Research Center,
Moffett Field, Callfornia, who developed what is now commonly referred
to as the "Chapman-Kirk'' technique for fitting the aerodynamic equations
of motion to free-flight data [see References 12 to 16 in the Biblio-
graphy]. When applied to differentizl oquations, FINLIE is ‘essentially
a general-purpese Chapman-¥irk progyam with frills,

(c) Rabert H. Whyte, of General Electric, Burlington, Vermont,
who for a number of yearz was apparently indefatigable in applying the
Chapman-Kirk technique to a variety of probiems. References 17 to 31
in the Biblicgraphy are a sampling of Whytefs reports on his lagbors in
this field.* Many of the handy features of Whyte's programs (for
example, the ability to handle multi-round data and to consider any
paramic value as fixed or adjustable) have found their way into FINLIE
(where they apply to algebraic/transcendental equations as well). It
was through my efforts to adapt one of Whyte's specialized programs t*o
our needs that I decided that what was needed was a more general-purpose
Chapman-Kirk program. Thus, the idea for FINLIE was conceived.
(Unfortunately, the gestation period exceeded that of an elephant.)

* It should be noted that in applying Chapman-Kirk to the oD equations
of motion, Whyte used an wweighted least squares criterion. Sinece the
angular and translational restguala of the fit are not of equal magnri-
tude, Whyte was yorzed to decouple the angular equations From the
translational equations. DMiasatisfaction with this enforced and often
unrealistic decoupiing led Whyte and Hathaway to abandon an wmweighted
least squares in favor of a weighted maximum likelihood eritertion.
Since this oriterion was derived on the asswmption of a normal error
distribution, their Maximum Likelihood Method [ace Refervences 35-39 in
the Bibliography) should yield the ‘same final fit (albeit by a differ-
ence path) as a comparably weighted lecst aquares approach.

64

A.

s e e S

BIBLIOGRAPHY

Marquardt's Algorithn

(1)

(2)

(3)

(4)

(5)

(6)

(7

Donald W, Marquardt, "An Algorithm for Least-Squares
Estiration of Nonlinear Parameters," J. Soc. Indust. Appl.
Math. 11, No. 2, June 1963, pp. 431-441,

Duane A. Meeter, ''On a Theorem Used in Nonlinear Least
Squares," J. Soc. Indust. Appl. Math. 14, No. 5, September
1966, pp. 1176-1179. [O0ffers a stronger version of one of
the theorems in (1) above .]

E.M.L. Beale, '"Numerical Methods,'" an article in the bgok
Ncnlinear Programming edited by J. Abadie, John Wiley § Sons,

New York, 1967,

Philip R. Bevington, Data Reduction and Error Analysis for the
Physical Sciences, McGraw-Hill, New York, 1969. {Lists and

discusses a FORTRAN subroutine CURFIT for fitting a single
nonlinear equation of the type y=g(x,P) with the aid of
Marquardt's algorithm.]

Cuthbert Daniel and Fred S. Wood, Fitting Equations to Data:
Computer Analysis of Multifactor Data for Scientists and
Engineers, Wiley-Interscience, New Yorl, 1971, [Gives a
User's Manual (and addresses at which the reader can obtain
a program listing) for Wood's FORTRAN program for fitting a
single nonlinear equation of the type y=g{(x,P) with the aid
of Marquardt's algorithm., Offers a chapter-Jong discussion
of an involved application.]

James W. Bradley, "Application of Marquardt's Nonlinear Least
Squares Algorithm to Free-Flight Yaw Data Analysis,'" Ballistic
Research Laboratories Memorandum Report No. 2526, September
1975, AD A016306. [Lists and discusses a FORTRAN subroutine
MARQ, an offspring of the subroutine CURFIT given in (4)
above. The minor refinements in Marquardt's algorithm that
have been written into FINLIE are discussed in detail here.]

Keyboard 1978/3 (a publication of Hewlett-Packard Desktop
Computer Division). This issue mentions the availability of
a ''9843 Nonlinear Regression Software'" package (09845-15040)
for use with the HP System 45. I'm not familiar with the
program, but to quote, '"This scftware pack contains programs
using Marquardt's Method to fit nonlinear models using up to
ten parameters."

65

.
L.

BIBLIOGRAPHY (continuad)

ggﬁdman's Method

Y

(9)

(11)

Theodo=e R. Goodman, ''System Idertification and Prediction -
An Algorithm Using a Newtonian Iteration Procedure,' Quarterly
of Applied Mathematics, XXIV, No. 3, October 1566.

Theodore R. Goodman and Theodore P. Sargent, "A General
Method for Identifying Nonlinear Dynamical Systems,' Oceanics,
Inc. Technical Report No. 68-53, September 1968. [Oceanics,
Inc. is located at Technical Industrial Park, Plainview,

New York 11803 .]

Theodore R. Goodman and Theodore P. Sargent, A Method for
Identifying Nonlinear Systems with Applications to Vehicle

Dynamics and Chemical Kinetics,' Oceanics, Inc. Technical

Report No. 71-83, August 1971. [Presented at the 1971 Joint

Automatic Control Conference, Washington University, St. Louis,
issouri.]

James W. Bradley, '"CHLOE: a FORTRAN Subroutine for Fitting
Ordinary Differential Equations to Observed Data,' Ballistic
Research Laboratories Memorandum Report No. 2184, February
1972. AD 743878.

The Chapman-Kirk Technique

(12)

(13)

(14)

(16)

om0+t M 21 ; N o N i

Gary T. Chapman and Donn B. Kirk, "A Method for Extracting
Aerodynamic Coefficients from Free-Flight Data," AIAA

Journal 8, No. 4, April 1970, pp. 75%-758. [Originally
presented in slightly different form as ATAA Paper No. 69-134
at the ATAA 7th Aerospace Sciences Meeting, New York City,
January 1969 .]

Charles H. Murphy, "Comment on 'A Methkod for Extracting Aero-
dynamic Coefficients from Free-Flight Data'', AIAA Journal
8, No. 11, November 1970, pp. 2109-2111.

Gary T. Chapman and Donn B. Kirk, "Reply by Authors to
C.H. Murphy,' AIAA Journal 8, No. 11, November 1970, p. 2111,

Gary T. Chapman, "Aerodynamic Parameter Identification in
Ballistic Range Tests,' a paper presentecd at the 1972 Army
Numerizal Analysis Conference, Edgewood Arsenal, Maryland.

Donald C. Daniel, "An Analysis of Methods for Extracting
Aerodynamic Coefficients from Test Data,'" Air Force Armament
Laboratory Technical Report AFATL-TR-73-32, Eglin Air Torce
Base, Florida, February 1973. [Compares the deterministic
Chapman-Kirk technique with the stochastic extended-Kalman-
filter technique.] 66

BIBLIOGRAPHY (continued)

D. Whyte's Applications of the Chapman-Kirk Technique

("RHW" in the fcllowing denotes Robert H. Whyte; "GE" denotes

General Electric Company, Armament Systems Department, Burlington,
VI 05401.)

(17) RHW and Jean-Guy Beliveau, '"An Investigation cf the Chapman-

Kirk Free Flight Data Reduction Technique,'" GE Advance
Munitions Report, August 1969.

(18) RHW and Jee»-Guy Beliveau, ''Non-Linear Free Flight Aero-

dynamic Reduction Using Angle of Attack or Angular Rate
Data," GE Class 7 Report No. R69APB6, December 1969. [A

revision of a report with the same report number but dated
September 1969,

(19) RHW and Jean-Guy Beliveau, ''Recent Applications of a
Numerical Inte;ration Scheme for Analyzing Free Flight
Motion Data," GE Advance Munitions Report, July 1970,

(20) RHW and Jean-3uy 3eliveau, '"Reduction of 4.2 Inch Mortar Free
Flight Spark Ran e Data by Numerical Integration," GE Advance
Munitions Resort, August 1870,

(21) RH¥ and Angela Jeung, "Aerodynamic Reduction of Free Flight
Transonic kange Data Utilizing Numerical Integration,”
GE Repo"t Wo. 1APBS514, April 1971.

(22) Wwayne 's. h-thawvay and RHW, '"Irterior Ballistic Data
Reduct "on Yec’.nique,' GE Repo:rt No. 71APBS561, December 1971.

(23} RHW a.d Wiyne H., Hathaway, '"Reduction of Yaw Sonde aid
Position Time Radar Data by Numerical Integration,' 3E Report

No. 7:APB506, January 1972.

(24) RHW 2nd Ray C. Houghton, "Reduction of Range and Yaw Sonde
Dat. Using Numerical Integration Techniques,' GE Report

No. 72APBS39, September 1972,

(25) RHW and Ray C. Houghton, "User Manual for AEDC Range G Free
Flight Reduction Computer Pregrams,' GE Report Nn. 72APBSSO,
O:tober 1972. [AEDC is the Arnold Engineering Development
Center, Tullahoma, Tennessee.]

(26) RIW, Angela Jeung and James W. Bradley, ''Chapman-Kirk Reduction
oi. kree-Flight Range Data to Obtain Nonlinear Aerodynamic
Coefficients," Ballistic Research Laboratories Memorandum
Report No. 2298, May 1973. AD 762148. [Covers much the same
material as (21) above, but from a different viewpoint,]

67

Bt o a6 Bt B

(27)

(28)

(29)

(30)

(31)

BIBLIOGRAPHY (continued)

RHW, Ray C. Houghton and Wayne H. Hathaway, 'Description of
Yaw Sonde Numerical Integration Data Reduction Computer

Programs,'" GE Report No., 73APBS514, May 1973.

RHW and William H. Mermagen, ''A 'Method for Obtaining
Asrodynamic Coefficients from Yawscnde end Radar Data,"
Journal of Spacecraft and Rockets 10, No. 6, July 1973,

pp. 384-388. [Originally presented as AIAA Paper No. 72-978
at the AIAA 2nd Atmospheric Flight Mechanics Conference,
Palo Alto, California, September 1972. See also Ballistic

Research Laboratories Memorandum Report No. 2280, March 1973.
AD 759482.]

RHW and Wayne H. Hathaway, ''Aeroballistic Range Data Reduction
Technique Utilizing Numerical Integration," Air Force
Armament Laboratory Technical Report AFATL-TR-74-41, Eglin

Air Porce Base, Florida, February 1974.

RHW, Ray C. Houghton and Wayne H. Hathaway, '"Description of
Yaw Sonde Numerical Integration Data Reduction Computer
Programs,'" Ballistic Research Laboratories Contract Report
No. 280, Deccmber 1975. [Documents work done by GE under a

U.S. Government Contract, November 1972 to April 1973.]

RHW and Ray C. Houghton, ''Reduction of Range and Yaw Sonde
Data Using Numerical Integration Techniques," U.S. Army
Armament Research and Development Command, Ballistic Research
Laboratory Control Report ARBRL-CR-00400, May 1979.
[Documents work done by GE under a U.S. Government Contract,
April to August 1972.]

E. Miscellaneous

(32)

(33)

Monte W. Coleman, '""MERSON Integration Routine,' SPB-10-70,
August 1970. {[One of a series of informal bulletins issued

by what was then the Computer Support Division and is now the
Management Information Systems Support Division (MISSD) of

BRL.]

Aivars Celmipg, "Least Squares Adjustment with Finite Resid-
uals for Non-Linear Constraints and Partially Correlated

Data,'" Ballistic Research Laboratories Report No. 1658,
July 1973. AD 766283, [Derives a better variance-covariance

matrix associated with a least-squares fit.]

68

F.

BIBLIOGRAPHY (continued)

(34) Martin Becker, "Yaw Sonde and Radar Data Reduction to Obtain
Aerodynanic Coefficients," U.S. Naval Weapons Laboratory
Technical Report No. TR-3073, September 1374, [Describes
two RHW/GE computer programs: HEEVE for reducing radar data
and ANGLES for obtaining aerodynamic coefficients from yaw
sonde data.]

(35) R.D. Grove, R.L, Bowles and S.C. Mayhew, "A Proceaure for
Estimating Stabiiity and Control Parameters from “light Test
Data by Using Maximum Likelihood Methods Employing a Real-Time
Digit~1l System," Langley Research Cencer, NASA TN D-6735,
May 1972. [Apparently the report that led Whyte and Hathaway
to apply the Maximum Likelihood Method te free flight data
analysis. See (36)-(338) below.]

Whyte and Hathaway's Maximum Likelihood Method

("RHW"' and "WHH" in the following denote Robert H. Whyte and
Wayne H. Hathawayv.)

(36) Kenneth 0. West and RHW, "Free Flight and Wind Tunnel Test
of a Missile Configuration at Subsonic and Transonic Mach
Numbers with Angles of Attack up to 30 Degrees," Vol. II,
Paper 39 of the Proceedings of the 1lth Navy Symposium on
Aercballistics, Trevose, PA, August 1978.

(37) RHW, WHH and E.M. Friedman, "Analysis nf Free Flight
Transonic Range Data of the 155mm, M483A1 and XM795 Projectiles,"
ARLCD-CR-79016, August 1979.

(38) WHH and RHW, "Aeroballistic Research Facility Free Flight
Data Analysis Using the Maximum Likelihood Method,' Air
Force Armament Laboratory Technical Report AFATL-TR-79-98,
December 1979,

(39) RHW, J.R. Burnett and WHH, "Analysis of Free Flight

Transonic Range Data of the 155mm M549 Projectile,"
Unnumbered GE Report, April 1980.

69

LIST OF SYMBOLS

NR

A(P) ag, » 80 N by N multi-round matrix.
n=

85k the (j,k)-th element of matrix A. [j,k=1,2,...N]

a -5

a. nondimensional

3k {ajja‘kk) a5k []
a. 1+ A when jak; 3, when jfk
jk NR J
)D -éEn , an N-dimensional multi-round vector.
n=l
PR |

b c, * “y20) in system (4)

by the k-th component of B.

~ ~;§ , .

bk (akk) bk [nondimensional]

c the vector of N3 parameters.

COND a ROMA input argument vector of N2 single-round initial
conditions.

CR s(rn)/e(Pn_l), FINLIE's measure of convergence,

cj the j-th paramece.. [j=1,2,...N3]

Djk(xm,Q) ay:(xm,Q)/aqk, the (j,k)~-th influence coefficient
evaluated at X using the current point Q.
[j=1,2,...N2; k=1,2,...N23]

puU a ROME output argument vector, Eq. (74).

EK a DUBLIN output argument vector of crude estimates
Spe [k=1,2,...N]

En the n-th round identifier. [n=1,2,...NR]

EPS a DUBLIN output argument: e(P), the value of ¢ at the
point currently stored in argument P.

F a DUBLIN input argument vector of N adjust-or-hold-
fixed flags associated with the N paramics p,.

FLAG a COMMON/NAPLES/ input vector to ROME (and ROMA) containing

the N23 single-round adjust-or-hcld-fixed flags
associated with the N23 paramics q -

71

FHECEDING . 6CE BLAKK~NCT F1LMED

e e e et = ‘A‘ ,.~

NB

NC

NF

NM

NR

NW

N1

N4

LIST OF SYMBOLS (continued)

yj’ , system (1)
yj’ system (2)

a2 nondimensional positive constant in the steepest
descent technique, Eq. (55).

the sct of multi-round initial conditions.
(NR x N2) + N3, the number of paramics in the system.

N2 x N23, the number of intiuence equations for
system (1).

N1 x N23, the number of needed influence equations
for system (2).

a DUBLIN I/0 argument: originally zero (the "first-
call" flag), it becomes the number of paramics adjusted.

a DUBLIN inpuc argument: 1 to fit system (1); O to fit
system (2).

a DUBLIN input argument vector, where NM(J) is the
number of data points R in the j-th round.

a DUBLIN input argument: the number of rounds (hence
the number of distinct sets of initial conditions to be

determinred).

a DUBLIN output argument: O means 'CALL again";

1 means "a disaster has occurred'; Z means ''convergence
by FINLiE's criterion".

a DUBLIN input argumant: O to use the user's weights;
1 tc set all weights at unity.

a DUBLIN input argument: the number of measured
dependent variables.

a DUBLIN input argument: the number of dependent
variables in the system.

a DUBLIN input argument: the number of parameters in
the system.

the number of data points R fcr all the rounds.

72

N5

N23

oo

PAR

paramic

RL

M

LIST OF SYMBOLS (continued)

a ROME input argument: the number of equations (N2
differential equations plus NA influence equaticns) to
be defined in ROME.

N2 + N3, the number of paramics in a single round.
(a) a set of N multi-round paramics;

(b) a point in the N-dimensional paramiz space;
(c) a EUBEIN I/0 argument vector containing the N

paramic values.

the vector from the origin to point P in the
N-dimensional paramic space.

the value of point P that minimizes €.

a COMMON/NAPLES/ input vector to ROME (and ROMA)}
containing the N3 parameters

the value of point P at the end of the n-th iteration.
[n=0,1,...]

a candidate for point Pn, obtained by setting A=
[n=1,2,...]
parameter or initial condition,
the k-th paramic (k=1,2,...N) where the order is:
first-round initial conditions, second-round initial
conditions,... and finally the N3 parameters.

L
(ay) ‘ Py the k-th nondimensicnal paramic.
the single-round equivalent of P.

the value of ponint Q that minimizes vy.

the k-th single-round paramic, where the order is: the
N2 initial conditions, then the N3 parameters.

a NUBLIN output argument: the N1 by N4 matrix of
residuals, Eq. (83), at the current point P.

a DUBLIN I/O argument: initially set at 0.0 to avoid
Marquardt's algorithm; 1.0 to invoke it,

the m-th data point, consisting of X, and the NI
dependent variable measurements yim.

73

ROMA

ROME

(7,34

jm

XE

X0

TR T

LIST OF SYMBOLS (continued)

an arbitrary name for the user's subroutine defining
system (2).

an arbitrary name for the user's subroutine defining
system (1). '

a DUBLIN output arjument vector of N1 error measures,
Bgq. (84).

an experiment at which measurements were taken and with
which a distinct set of initial condition values can
be associated.

the N-dimensional space in which point P has coordinates
(Pys Pps «ev Py

tiie N-dimensional scaled space in which point P has

coordinates (El, 52, cos §N)

the N23-dimensional single-round space in which point
Q has coordinates (ql’q2"‘°qu3)'

a DUBLIN output argument: the value of s at the
current point P.

estimated standard deviation of the fit, Eq. (69).

the crude estimated standard deviation in paramic Py>
Eqs. (70-71).

a ROME input argument vector, Eq. (73); a ROMA output
argument vector.

exp[cl(x-xo)] in system (4).

a DUBLIN I/C argument: the N1 by N4 matrix of weights

W, .
jm

the non-negative weighting factor associated with ;jm'
a DUBLIN input argument vector of the N4 values X,

a ROME and ROMA input argument- the value of x.

a DUBLIN and ROMA input argument: Xg-

the independent variable of the system

74

LIST OF SYMBOLS {(continued)

‘;g A X the m-th value of x at which measurements were taken,
{ R X, the value of the independent variable at which all
] initial conditions apply.

'“fi i k¢ (a) a vector of N2 dependent variables;
IR . (b) a DUBLIN input argument: the N1 by N4 matrix of
B dependent variable measurcments Yim®
YC ‘ 2 DUBLIN output argument: the N2 by N4 matrix of

: computed dependent variable values yj(xm,P).

N -

| 8 Yo a vector of N2 single-round initial conditions.

o

'8 Y, the j-th dependent variable. [j=1,2,...N2]

fﬁ’;;if. ;' the measured value of y. at x

jm j m
[i=1,2,...N1; m=1,2,...N4]

yj(xm,P) the calculated value of yj at X using the current
peint P.
a(Q) the N23 by N23 single-round matrix at point Q
Cpn the N by N expansion of the matrix o associated with round
En.
akn(Q) the (k,n)-th element of a(Q), Eqs. (36-38).
g(Q) a vector point function of Q: the vector in space 4
in the directinn of the negative gradient of | at
point Q.

the N-dimensional expansion of the vector § associated
with round En.

By the k-th component of B. [k=1,2,...N23]
Ip the increment vector in S from point P_ to the nearby
n . P n
point Pn+1.
XQn the increment vector in 1 from point Q, te the nearby
peint Qn .
+1
= vy (@ the single-round equivalent of ¢(P), Eq. (14).

75

adai b o Dot o T TSR e e 4 ey

T— -

LIST OF SYMBOLS (continued)

e(P) the nondimensional sum of the weighted squares of the
residuals, Eq. (7); the value of the scalar point
function € at point P.

A a nonnegative constant added to each diagonal element

of the scaled form of matrix A and adjusted by
Marquardt's algorithm so that e(Pn+1) < e(Pn).

AAY XnB ::omgszszigiiveitriAI values assigned to A in an effort
point P, where AnB 1oan.

Superscripts

) a Tow vector

(*)T the transpose of a row vector: that is, a column vector

(~) the scaled (hence nondimensional) form of ().

) d()/dx

Subscriggg

(1g denotes the dimensions of []

(g the components of () are in space S
()3 the components of () are in space S

()S1 the components of () are in space Sq-

76

APPENDIX

C
C *ene FINLIE #ose FNLE 1
c : FNLE 2
SUBROUTINE DUBLIN (ROME,NFyNLoNZINIINT o NByNRoNMoX0o XoYoFaNWyy FNLE 3
1 PoRLINCIYCIReRSIEPSISTIAIEKINS) FNLE 4
C ‘ FNLE 5
c ® "B DR RN RRT R NR LR R R RN R N e w8 w FNLE 'S
C *) * FNLE 7
c » INPUT ARGUMENTS L0 * FNLE A
c L ROME s THE DUMMY NAME OF THE SUBROUTINE (WRITTEN BY THE * FNLE 9
c A USER) THAT DEFINES EITHER ® FNLE 10
c . {A} THE DEPENDENT VARIARLES (NF = 0) *® FNLE 13
C @ OR (B} THE DERIVATIVES OF THE DEPENDENT VARIABLES ® FNLE 1
c . ' (NF (NE, 0) * FNLE 123
c » NF = THE FLAG THAT INDICATES THE NAYURE OF SUBROUTINE * ENLE 16
c * ROME (SEE PREVIOUS ARGUMENT) * FNLE 15
C * Nl = NUMBER OF MEASURED DEPENDENT VARIABLES * FNLE 1¢
C # (1 oLEe Nl JLE. 10) * FNLE 17
C * N2 = TOTAL NUMBER OF DEPENDENT VARIABLES * FNLE 18
c hd (N1 JLEe. N2 ,LE. 20) # FNLE 19
(o Ld N3 = THE MAXIMUM NUMBER OF PARAMETERS (NOT COUNTING * FNLE 20
C * INITIAL CONDITIONS) WHOSE VALUES CAN BE DETERMINED * FNLE 21
Cc * FROM THE USER'S SUBROUTINE ROME (0 ,LE. N3 .LE. 40) ® ENLE 27
C o NT = THE NUMBER OF ROWS IN ARRAYS Y,W AND R BELOW, AS *® FNLE 23
c o DIMENSIONED IN THE CALLING PROGRAM (N7 .GE. N1) ® FNLE 26
C b N8 = THE NUMBER OF ROWS IN ARRAY YC RELOW, AS * FNLE 2%
c * DIMENSIONED IN THE CALLING PROGRAM (NB ,GE. N2) * FNLE 26
(of # NR = THE NUMBER OF ROUNDS (INDIVIDUAL CASES) TO BE REDUCED® FNLE 27
C # SIMULTANEOQUSLY (1 (LEs NR JLEes (60 =~ N3)/N2) * FNLE 20
(o * NM = A VECTOR OF NR ELEMENTSy 4HERE #® FNLE 29
C * NM{J) = THE NUMBER OF INDEPENDENT VARIABLE VALUES AT ® FNLE 30
Cc # WHICH MEASUREMENTS WERE TAKEN FOR THME J=TH ® FNLE 31
o # ROUND * FNLE 3?2
C o NOTE ... WE DEFINE * FNLE 33
C # N4 = NM(]1) + NM{2) « ,,, + NM(NR) * FNLE 3¢
C # = THE TOTAL NUMBER OF INDEPENDENT VARIABLE * FNLE 3%
C # VALUES FOR ALL THE ROUKNDS ® FNLE 36
C # N = NR®NZ2 + N3 ® FNLE 37
c L4 s THE NO, OF ELEMENTS IN P BELOW * FNLE 38
C bt NMAX = THE MAXIMUM ELEMENT OF ARRAY NM * FNLE 39
Cc - THEN WE MUST HAVE * FNLE 60
C » N olLTe N& LI.Es 1000 ¢ FNLE &)
c L4 N1®NMAX LLE, 200 * FNLE 42
C o NZ2®*NMAX (| E, 400 * FNLE 43
C ® X0 = THE REFERENCE IMDFPENDENT VARIABLE VALUE AT wHICH ® FNLE 64
C * ALL INITIAL CONDITIONS APPLY, NOTE ,ee INPUTS X0 ® FNLE 45
C b N1yN2 AND N3 ARE ASSUMED TO HAVE THE SAME VALUE FOR ® FNLE 46
(o * EACH ROUNDS ® FNLE &7
(o * X = A VECTCR UF THE N& INDEPENDENT VARIABLE VALUES AT ® FNLE 48
C L4 WHICH MEASUREMENTS WERE TAXENs WHERE ®* FNLE 49
C A X(1)9 ceeovossasX({NM(]})) FOR THE FIRST ROUND * FNLE &0
Cc * X(NM(1li+1)y oo X(NM(1)+NM(2)) FOR THE SECOND ROUND * FNLE S}
C * ETC. *® FNLE 5?2
C L Y = THE N1 RKY N& MATRIX OF MEASURED DEPENDENT VARIARBLE ® FNLE 53
c » VALUESy WHERE ® FNLE Se
C » Y{led) = THE MEASURED VALUE OF THE l«TH DEPENDENT * FNLE 585
c » VARIABLE AT X(J) ® FNLE 56
c b F = THE VECTOR OF N FLAGS FOR ARGUMENT P BELOW, WHERE * FNLE 57
c . F(J) = 0,0 IF THE VALUE OF P(J) 5 FIXED * FNLE 58

77

sNeBeloNeoNeNeNeNeNoNeNoNoNeNeoNoNe NaNeNeNeo e NoNoEvRsNoNe Re e NoNeo N NoNo Re Ne NeRe Xe R Xe e Re o Re Ro Xo Xo Xo Ko N Ke Xe Xe X e R o e K)

$ % & & &2 st PSS E XS ST ST A0S %Y XL XS SR O E T LS L LS R E X ST TS ZELEE LSS OO

F1J) » 1,0 IF THE CURRENT VALUE Of P(J) IS TO BRE
ADJUSTEDR 8Y THE FITTING PROCESS

NW a THE WEIGHT FLAG ASSOCIATED WITH w BELOWs WMERE

NW = 0 IF THE USER'S WEIGHTS IN ARGUMENT w ARE YO

#E USED
NW & 1 IF ALL WEIOGHTS ARE UNITY, IN THIS EVENT: THE

THE FIRST TIME THIS SUBROUTINE IS CALLEDs ALL

EL.EMENTS OF MATRIX ¥ ARE SET TO 1.0, (HENCE,
THE USER NEED NOT ESTABLISH W WHEN ALL ITS
ELEMENTS ARE 1.0.)

W s THE N1 BY N4 MATRIX OF WEIGHTS ASSOCIATED WIYH INPUT

Y ABOVE, SEE ARGUMENT NW ABOVE,

INPUT/0UTPUT ARGUMENTS ...
P m THE CURRENT POINT AT WHICH OTHER ARGUMENTS ARE

RL

NC

EVALUATED» WHERE

P(l)oosveavscasenenasP(N2) ® JoCs FOR FIRST ROUND

P(N2*l)sevecesenseP(20N2) = T,Co FOR SECOND ROUND

ceee .

P(NR®5Z=N2 1) yoe s PINRON2) = 1,0, FOR LAST ROUND

p(NR.NE"’},)'..'...P(N) = P‘RAMETERS

A MARQUARLCT ARGUMENT, BEFORE DUBLIN IS CALLED THE

FIRST TIME»

SET RL = 0.0 IF THE MARQUARDT ALGORITHM IS TO BE
OVITTED, THEREAFTER. RL WILL REMAIN
AT 0.0,

SET RL = 1.0 IF THE MARQUARDT ALGORITHM IS TO AFE
USED. THEREAFTERs R{ UPON RETURN WILL
BT MARQUAROT'S LAMRDA, (MHENCEs USE A
NAMEs NOT 100 IN THE CALL LIST.)

THE *FIRST CALL' FLAG', BQEFORE THIS SUBROUTINE IS

CALLED FOR THE FIRST TIMEs NC MUST 8E SET 70O 0.

THIS SURROUTINE THEN ESTABLISHES NC AS THE ACTUAL

NUMBER OF INITIAL CONDITIONS AND PARAMETERS BEING

DETERMINED (1 4LEs NC JLE, N)

OUTPUT ARGUMENTS s,
YC = THE N2 BY N4 MATRIX OF COMPUTED DEPENDENY VARTABLE

RS

EPS

S16
EK

NS

VALUES AT THE POINT CONCURRENTLY STORED IN ARRAY 9,
WHERE YC(JsK) = CCMPUTED VALUE OF THE J=TH DEPENDENT
VARIARLE AT X (K)

THE N1 BY N& MATRIX OF RESIDUALSs WHERE

R{Isd) = Yiled) = YC(1sd)

THE VECTOR OF N1 ERROR MEASURESs WHERE

RS{1) = WEIGMTED SUM OF THE S5QUARES OF THE
RESIDUALS IN THE I=TH MEASURED DEPENDENT
VARIABLE

THE ERROR MEASURE OF THE FIT AT THE POINT

CONCURRENTLY STORED IN ARRAY P, EPS 1S THE WEIGHTED

SUM OF THE SQUARES OF THE RESIDUALS OVER ALL TKE

POINTS, OVER ALL THE MEASURED DEPENDENT VARIABLES

AND OVER ALL TME ROUNDS.

THE ESTIMATED STANDARD DEVIATION OF THE FIT

THE VECTOR OF CRUDELY ESTIMATED STANDARD DEVTIATIONS

IN THE ELEMENTS OF POINT P,

QUTPUT FLAG, WHERE

NS s 0 IF THE PROCESS WAS NOT YET CONVERGED BY
THE CRITERION BUILT INTO SUBROUTINE DUSLIN

s 1 IF ALL OUTPUT ARGUMENTS ARE INVALID (PRORABLY

BECAUSE SOME INPUT ARGUMENTS ARE TO0 LARGE
FOR CERTAIN DIMENSIONED ARRAYS), THE CALLING
PROGRAM SHOULD TAXE SPECIAL ACTION (E.8.0

78

O."0.0"‘."0'..0.“Ot“ﬁl."‘#"8.0.“‘O.‘.‘O.“#“..‘3."

FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FuNLE
FNLE
FNLE
ENLE
FrLE
Frulf
FaLE
FNLE
ENLF
FNLUE
FNLE
FNLE
FNLE
FNLE
FRLE
FNLE
FNLE

59
60
t1
he
63
64
65
&6
67
%R
69
70
71
T2
73
T4
75
T6
17
TR
79
HO
R1
a7
A3
84
85
Ba
87
AR
89
90
91
92
93
G
CL)
96
97
98
99
100
101
10?7
103
104
165
106
107
108
109
110
111
112
113
1le
115
116
117
118

S TR TR

c » STOP) IN THIS EVENT, * FNLE 119
c o = 2 IF THE PROCESS HAS SATISFIED VTHE BUILT~IN ® FNLE 120
c * CONVERGENCE CRITERION * FNLE 121
c = } ® FNLE 122
C U R R RN R R E RN R E RPN SN s &R a W FNLE 123
o FNLE 12¢
DIMENSTION NM(})aX (L) oY {NTo1)oF (1) yM(NTo1)sP (1) oYCINBsLIoR(NTo1)y FNLE 125
1 RS(1)¢EK(Y) FNLE 126
SR DIMENSION ALFA(3600) vALF (60+60)sGAMMA(60060) vRATA(60)9S(60) FRLE 127
. PR 1 PA(60) ¢PB{60)1PC(60) sALPHA(60+60)+8ETAIH0) FNLE 128
! s EXTERNAL ROME FNLE 129
c FNLE 130
4 C e%s PART 1, PRELIMINARIES FNLE 131
- c FNLE 137
i M1 = N} FNLE 133
M2 = N2 FNILE 134
' M3 = N3 FNLE 135
St M7 = N7 FNLE 136
A M8 = N8 ‘ FNLE 137
- PR MC = NC FNLE 138
- MR = NR ' FNLE 139
© SR al = RL FNLE 140
EA = EPS FNLE 141
IF (MC .GT, 0} GOTO 40 FNLE 142
¢ FNLE 143
C THE FIRST TIME DUBLIN IS CALLED (INPUT NC = 0)» FNLE 146
c SET AlLL WEIGHTS TO 1,0 IF Nw w 1, THEN EVALUATE FNLS 145
c ALPHA, BETA, YCs Ry RS+ EPS AND SIG AT INPUT FNLE 146
C POINT Po OUTPUT NC IS THE NUMBER OF PARAMETERS AND FNLE 147
: c 1.C. TO BE DETERMINED. IF THE MARQUARDT ALGORITHM FNLE 148
s c 1S TO BE USEDs SET RL = ,01. RETURN, FNLE 149
o C FNLE 150
. M4 = 0 FNLE 152
DO & U = 1¢MR FNLE 153
4 : M4 = Mé + NM{J) FNLE 154
A 5 CONTINUE FNLE 155
R IF (NW ,NE. 1) GOTO 30 FNLE 151
| ST DO 20 J = 1liMé FNLE 156
| D0 10 T = 1Ml FNLE 157
'S W(Isd) = 1,0 FNLE 158
e 10 CONT INUF FNLE 159
. SRR 20 CONTINUE FNLE 160
| AR 30 CALL LONCON (ROME sNFsM1yM2eM3sMToMBy60sMRyNMoX09XoYoWoeFoPy FNLE 161
+ KA 1 EA¢MCoALPHARETASTCIRIRSINS) ENLE 162
L EPS = FA FHLE 163
i EM = Mé = MC FNLE 164
IF (EM .GY, 0.) SIG = SQRY(EPS/EM) FNLE 165
IF (EM .LE, 0,) SIG = 0, FNLE 166
4 NC = MC FNLE 167
' IF (QL oNE. Oo) RL = 0,01 FNLE 168
g RETURN FNLE 189
. c FNLE 170
- C aews PART 2, ON SUBSEQUENT DURLIN CALLS: DECREASE THE INPUT RL, FNLE 171
Y C SHRINK INPUT ALPHA, RETA AND P TO ALF, HATA AND PA 7NLE 172
' c BY ELIMINATING ALL 'FIXED' (F(X)®»0,0) COMPONENTS, FNLE 171
3 40 CONTINUE FNLE 17¢
IF (QL +GT. 0.5E=16) QWL = 0.1%QL FNLE 178
LD = MR®M? « M3 FNLE 176
JA £ 0 FNLE 177
JB = 0 NLE 17R

79

DO &0 JU = 14LD FNLE 179

i IF (F(J) JEQ. Do) 30Y0 60 FNLE 1480
.. DO S50 K = 14D FNLE 181
. ¥ IF (F(K) «EQe Ja) GOTO SO FNLE 18?7

AR JB = JB ¢ 1 FNLE 183

ALFA(UR) = ALPHA(K,J) FNLE 184

50 CONT INUE FNLE 145

JA = JA ¢] FNLE 1MA

SATA(JA) = RETA(J) FNLE 147

. PA(JA) = P(J) FNLE 18R

N 60 CONTINUE FNLE 189

| A JB ® 0 FNLE 190
T D0 80 J = 1.MC FNLE 191

- . DO 70 K = 1yMC FNLE 197
| JB = JB ¢+] FNLE 193
. v ALF(KyJ} = ALFA(JR) ENLE 194
| R 70 CONTINUE FNLE 165
| SR 50 CONTINUE FNLE 196
5 c FNLE 197

C FORM SCALE FACTORS S(J). FNLE 198

C REPLACE BaTA WITH SCALED BATA, FNLE 19y

c FORM SCALED ALF(JsX) AND STORE ABOVE THE PRINCIPAL FNLE 200

C DIAGONAL AS ALF(KsJ)e FNLE 201

C FORM EM = THE SQUARE OF THE MAGNITUDE OF THE FNLE 207

C SCALED BATA VECTOR. FNLE 203

C FNLE ?2Co

RM = 0, FNLE 205

DO 1G0 J = 1eMC FNLE 204

S{J) = 1./SART(ALF (JsJ)) FNLE #07

RATA(J) 3 S(J)=*BATA () FNLE 204

8M = BM +« BATA(J)®*#2 FNLE 200G

K= yJ =1 FNLE 210

Q0 IF (R +EQ, 0} 30T0 100 FNLE 211

ALF(KyJ) = S(J)ES(KI®ALF (JyX) FNLE 2?12

K = K -] FNUE 213

GOTO 9¢ FNLE 214

100 CONTINUE FNLE 715

FNLE 214

aau PART 3, FORY MATRIX GAMMA HASED ON THE CURRENT VALUE 0OF FNLE P17

MARQUARDT 'S [AMBDA, FNLE 21K

110 CONTINUE FNLE 219

DIAG = 1, + QL FNLE P20

DO 130 J = 14MC FNLE 2°7)

GAMMA{JyJ) = DIAG FNLE 222

K = J = 1 FNLF 273

120 IF (K JEQ, 0) 60OTO 130 FNLE 276

GAMMA(JoK) = ALF (Ked) FNLE 228

GAMMA (Ko J) = &LF (KyJ) FNLF 22nm

K £ K = FNLE P27

GOTO 120 FuLE 228

130 CONTINUE FNLE 226

ENLE 230

REPLACE GAMMA BY ITS INVERSE, FNLE 231

FNLE 237

CALL MATINV (GAMMALMCsPR(E0,0sD0T) ENLE 233

FNLE 2136

FORM THE COMPUNENTS OP OF THE SCALED DELTA P VECTOR, FNULF 234

FORM THE NEW POINT PC. FNLE 238

FORM DOT = THE DOT ©ORUDUCYT OF THE SCALE"D RATA AND FNLE 237

THE SCALED NDELTA P VECTORS, FNLE 238

S0

B e

OO0

e NeNeNe!

DOOOOO

e EaNelNe Ne!

140

160
170

FORM DPM =
FORM TR =
DoY = 0,
DPM & (¢,
DO 150 J = 1,MC
oP = 0.

DO 140 K = 15MC
DP = NP + BATA(K
CONT INUE
PC(J) = PA(J) + DPes
DOT = DOT + DP#BATA(
DPM a DPM + DPapP
CONT INUE
TR = DOT##2/ (DPM*BM)

EXPAND PC T
REPLACEMENT

K =1
DO 170 J = 1,LD
IF (F(J) LEQe. 0.} GO
PR(J) = PCI(K)
K= K ¢]
GOTO 170
PB(J) = P(J)
CONT INUE

4% PART 4, FOR THE CaAN

180

190

200

ER (AND ASS

CONTINUFE

CALL LONDON (ROMEsNFM],
1 FRsMDALPHA
IF (NS .EnN, 1) RETURN

COMPARE NEW
AT POINT P,
ALGORITHM 1

IF (EB ,LE. EA) GOTC 210
IF (QL .EQ, 0,) GOTO 21¢

IF THE ANGL
45 DEGREES,

THE SQUARE OF THE WMAQGNITUDE OF THE
SCALED DELTA P VECTUR,

THE SQUARE OF THME COSINE OF THE ANGLE
RETWEEN BATA ANN DELTR o,

) *GAMMA (Js K)

tJ)
J)

0 FULL SIZE AS PBs THEC CANDIDATE ~
FOR INPUT POINT P,

T0 160

DIDATE POINT Py OBTAIN THME EQROR MFASURE
OCIATED ARRAYS YCs Re RSy ALFHA AND BETA),

M2 o M3 MT ¢ MBy 60 s MRoNMaX Qs X9 Yoo FePR,
sRETAsYCyRoIRSoNS)

ERROR £8 AT POINT PB WITH INPUT ERROR EA
IF EB IS NO LARGER (DR IF THE MARQUARDT
S NOT BEING USED) PROCEED TO PART 5,

E BETWEEN BATA AND UELTA P IS LESS THAN
OBTAIN A NEW& POINT PB BY DECREASING THE

LENGTH OF DELTA P AND GO RACK TO PART &,

IF (TR .GF, .,5) GOTO 200
DO 190 U = (.00

PR(J) = P(J} + D.1o¢
CONTINUE
GOTO 1A0

INCREASE ™A
CONTINUE

QL = 10.%0L
6OTO 110

PR(J)=P(J))

RQUARDT'S LAMBNDA AND GO BACK TO RART 3,

81

VT EADTTARTRARE T T TR AR e

FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
ENLE
FNLE
FANLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
¥NLE
FNLE
FNLE
FNLE
FNLE
FANLE
FNLE
FRLE
FNLE

239
240
241
242
243
244
245
246
eae?
248
246G
250
251
282
253
294
255
25¢&
257
256
259
260
2€1
26
263
2ha
265
266
&7
268
269
270
271
2712
273
274
275
276
2717
2TH
2719
280
281
2H2
283
284
285
286
287
28K
284
290
291
rap
291
296
29h
29&
2R7
2R

F A o cdiiad

FNLE 299

¢
c #ew PART &, THE MARQUARDT ITERATIVE PROCESS HAS BEEN COMPLETED FNLE 300
c SATISFACTORILY, UPDATE ERROR MEASURES EPS AND SIG. FNLE 301
e c TEST FOR CONVERGENCE. USDATE POINT P AND COMPUTE FNLE 302
‘ c ERROR ESTIMATES EK, FNLE 303
) 210 CONTINUE FNLE 30¢
AR RL = QL FNLE 305
I EPS = EB FNLE 306
. SIG = SQRT(EB/EM) FNLE 307
S CR = 1,0 - EB/EA FNLE 304
' IF (CR +BE. Os +AND: CR LT, 0,000010) NS & 2 FNLE 309
SRR K =} FNLE 310
SRR DO 220 J = 14LD FNLE 2311
W P(J) = PB(J) FNLE 312
A 1IF (F(J) LEQG. 0,) GOTO 215 FNLE 313
. EK(J) = SIG*S(K)#SQRT(GAMMA(KsK)®*DIAG) FNLE 314
- Y. K = ¢ 1 FNLE 315
= GOTO 220 : FNLE 316
£ 218 EK(J) = 0, FNLE 317
- S 220 CONTINUE : FNLE 318
RETURN FNLE 319
E o END FNLE 320
B C FNLE 321
E 7 C"""“-""----"-"-‘"""-"--""--""’32?
#, R c FNLE 323
& SUBROUTINE LONDON (ROMEyNAINLIN2sNIoNTeNBINLINRyNMsXAyXoYoNoF P, FNLE 324
B 1 EPSoNCoALPHAWBETA,YCsRIRSHIS) FNLE 325
R c FNLE 326
- . C LA IR I N 2L B 2R N N N AR 2K TR R N TN IR N I I I I A A A A I A I) FNLE 327
oo o * * FNLE 328
SR C # FOR A GIVEN SET OF PARAMETER AND I.C. VALUES AND A GIVEN ® FNLE 329
R o # MULTI-ROUND SET OF MEASUREMENTS: THIS SUBROUTINE PRODUCES ® FNLE 330
L o @ THE ERROR MEASURE E7S. THE COMPUTED DEPENDENT VARIABLE ® FNLD 33N
o C e VALUESs THE RESIULUALS AND THE ALPHA AND BETA ARRAYS FOR THE # FNLE 332
S c * MULTI=RUUND DaTa., ALL ARGUMENTS ARE DEFINED IN THE COMMENTS ® FNLE 333
: < * WITHIN SURROUTINE DUBL IN, * FNLE 374
0 ¢ @ ® FNLE 33%
. [t ib““bh'ﬁﬂh'“.u.ll.'b&!l'i.'QQQQQQ'F’NLE:;_’;b
. c FNLE 337
. DIMENSION NM(1}oP (1) oF 1) eX(L)sY(NTol)eWINTs1), FNLE 338
. SE 1 YC{NBs1) sR(MTo1) oRS (1) o ALPHA(NL L} +BETA(]) FNLE 339
X : DIMENSION RSQ(10) FNLE 140
g C ® THE ABOVE DIMENSION ASSUMES THAT Nl .LE. 10 FNLE 341
"I DIMENSTION C(20)4CF(20) FNLE 347
bt C ® THE AROVE DIMENSIONS ASSUME THAT N2 JLE, 20 FNLE 343
Sy DIMENSION CP(40) ¢FP(40) FNLE 346
e * YHE AROVE DIMENSIONS ASSUME THAT N3 LLE. &0 FNLE 345
DIMFNSION ALFA(3600)+BATA(60) FNLE 346
C * THF ABOVE DIMENSIONS ASSUME THAT N2 ¢+ N3 LLE, 60 FNLE 347
DIMENSION RE(200)+sWR(200),YM(200) FNLE 348
C * THE AROVE DIMENSIONS ASSUME THAT N1®(MAX, ELEMENT OF NM) ,LE, 200 FNLE 349
DIMENSION YCOMP({400) FNLE 350
C ® THE AROVE DIMENSION ASSUMES THMAYT N2®(MAX, ELEMENT OF NM) ,LE, 400 FNLE 35)
DIMENSION XX 11000} FNLE 1352
2% THE ARBOVE NIMENSION ASSUMES THAT FNLE 353
» NMO1) ¢ NM(2) ¢ .., + NM(NR) ,LE. 1000 FNLE 35
EXTERNAL ROMF FNLE 355
¢ FNLE 356
C ®#ee PRRT |, ®eo PRE|IMINARIES FNLE 357
C FNLE 358

Bt B L A R S S ST WAL Y

o FNLE 356

IS =
MR = NR FNLE 360
S Ml = N FNLE 3a1
j M2 = N2 FNi.E 362
s M3 = N3 FNLE =263
M23 = M2 &+ M3 FNLE 466
M6 = M2®MR FNLE 36%
LC = 1 + M§ FNLE 366
LD = M3 + Mg FMLE 367
JX = 1=(]1¢M23) % (LC=M2) FNLE 368
DO 220 N = 1,LD FNLE 369
ALPHA(NJN) = 0, . FNLE 370
3 , BETA(N) = 0, FNLE 371
AR . IF (N +EQ., LD) GOTO 220 FNLE 372
e MA = N ¢+ 1 FNLE 373
' DO 210 K = MAWLD FNLE 374
ALPHA(K.N) = 0, FNLE 375
o ALPHA(NyK) = O, : FNLE 376
R e1n CONTINUE FNLE 377
b 220 CONTINUE : FNLE 374
DO 230 I =]yM] FNLE 379
RS(T) = 0, FNLE 380
230 CONTINUE FNLE 38)
. MC = ¢ FNLE 382
. - NO 240 K = 14M3 FMLE 383
S KA = K + Mg FNLE 386
T B CP(K) = P(KA) FNLE 385
: FP(K) = F(KA) FNLE 346
g IF (FP(K) WNEos O0¢) MC = MC + 1 FNLE 347
SR 240 CONTINUE FNLE 388
o JA = 0 FNLE 3R9
E] JB = 0 FNLE 390
ot EP = 0, FNLE 39)
S c FNLE 297
. C eue PART 2, #e8 THE DO-LOOP FOR HANDLING MULTIPLE ROUNDS FNLE 393
NI o FNLE 394
R DO 370 UR = 1,MR FNLE 39%
A M& = NM(JR) FNLE 396
L DO 260 M = 1iMé FNLE 397
by "] IA = (M=1)e#M] FNLE 398
R JA = UA ¢+) FNLE 139y
. XX (M) = X{JA) ENLE 400
DO 250 I = 1eM} FNLE «0)
IM = T4 + 1 FNLE a4n¢
- SO YM{IM) = Y(I,JA) FNLE 4073
L WR{IM) o W(IyUA) ENLE 40«
: . _ 250 CONT INUE TNLE 408
3 B 260 CONT INUFE FNLE &a06
' LA = (J/R=])eM2 FHLE 07
DO 270 K =]4M2 FNLE wOA
LA = LA +) FNLE 4«09
X C(K) = P(LA) FNLE 410
! CF(X) = F(LA) FNLE 611
; 1F (CF(K) JNE. 0.) MC = 4C +] FNLE 812
. 270 CONT INUE FNLE 13
) CALL PARIS (ROMEsNA; 1 4MLloM2iM2394bysCoCFoCP o FP WRyXAs XK Y M, FNLE sl
| 1 YCOMP»AF yRSQe ALFAsBATALIR) ENLE 416
IF (IR FQ, 0) GOTO 2A0 ENLE a6
IS = 1 FNLE)7
PRINT 275 FNLE 61k

83

» " , W PR AL L Y e —ry

75 FORMAT (1M 410X sUNSUCCESSFUL RETURAN FROM SURRDUTINE PARIS,FNLE 419

17711 o 10Xe'ALL SUBROUTINE OUBLIN OUTBUTS INVALID.!) FNLE 470

RETURN FNLE «2)

28y CORTINUE FNLE 4«22

CO 290 I = 1M} FNLE 423

RS(Y}) = RS{I} « RSQ(I) FNLE 424

EF - ER v RSQ(]) FNLE 625

2%0 CONTINUE FNLE 426

DO 210 M & JoMs FNLE 627

: NT ®» (Ko1)o} FNLE 428

: NJ = (Ma])®M2 FNLE 429
o, Jg = U ¢} FNLL 430
o 00 300 J = 1oM2 FNLE 431
Fooe iM = NI » J FNLE @32
4 = NJ v FNLE 433

YC(JedB) = YCOMP (jM) FNLE o3¢

IF (J oLE, M1) R(JsJB) = RE(IM) FNLE 435

300 CONT INUE FNLE &36

310 CONTINUE FNLE 437

LA 8 1 ¢ (JR=])eMg FNLE 38

LB = LA + M2 -) FNLE 439

Jo=] FNLE 440

Ju o=] FNLE 461

DO 340 N = {A,LB FNLE 46?2

; I XK & N FNLE 443
LA Jm=oJ o+ Ko LA FNLE 4«64
A 220 ALPHA (NsK) = ALFA(J) FNLE 445
r o IF (K ,GT. N) ALPHA(KoN) = ALFA(J) FNLE 446
o J s J e] FNLE 447
| SR K s K « 1 FNLE 448
h SR IF (K .LE, LB) GOTO 320 FNLE 449
$. K = LC FNLE 450
Tl 330 ALPHA(N'K) = ALFA(J) FNLE 451
i, - ALPHA(KeN) = ALFA(J) FNLE 452
. e J s g e] FNLE 453
)¢ K os Ko+] FNLE 456
s IF (K LLE. LD} GOYO 330 FNLE 45%

E - BETA(N) = BATA(UY) FNLE &%6
LT Ju s JJy o+ | FNLE 457
' 340 CONTINUE FNLE 458
R JJ = 1 e M2 FNLE 459
DO 360 N = 'CyLD FNLE 460

K = N FNLE 661

J o= UX s (1 ¢ M23)epN FNLE 462

350 ALPHA (N K) s ALPHAINIK) + ALFA(J) FNLE 663

IF (K ,6Te N «AND. JR EQ. MR) ALPHA(KsN) = ALPHA(NyK) FNLE aea

J= oy ool FNLE 465

K % K o] FNLE a66

IF (x JLE, LD) 60OTD 350 FNLE 467

BETAIN) = RETAIN) « BATA(JU) FNLE ¢b8

NI AR NN FNLE 859

360 CONT *NUE FNLE 470

370 CONTIWUE FNLE 7]

EPS = EP FNLE 472

NC = M(FNLE 73

RE TURN FNILE (T4

END FNLE 478

c FNLE 476

C = @ = e = « = - e T - e e m s e m e 477

c FNLE «78

e " PRI S SRS ST ANIIORS FeCar gy O ——

SUBROUTINE PARIS(ROMEINAYNByNL g N2eN2IaNSoCoCFoPyF ool AaXe YMy FNLE 675

1 YCyReiRSQoALFABATA,. IR) FNLE 480
C FNLE 4R
C QOCG.QQQQQOQOQPOOOWGQOQQQiiﬂcbﬂﬁuﬂF‘MLEQH?
C * @ FNLE &813
C o FOR A GIVEN SUT OF PARAMETER AND IC ESTIMATES AND THE GIVEN ® FNLE oHeo
C - MEASUREMENTS FOR A SINGLE ROUNDy THIS SURROUTINE PRODUCES ® FNLE «R&
C L g THE COMPUTED DEPEMNDENT VARIABLE VALUESe THE RE3IDUALS AND ® FNLE &85k
C * IF NB .NE, 0) THME ALPMA AND BETA ARRAYS FOR THE GIVEN ROUND.®* FNLE 497
C i * FNLE 4HA
C * INPUT ARGUMENTS , o4 # FNLE 4HRY
C * ROME = THE DUMMY NAME OF THE SUBROUTINE (WRITTEN 8Y THE * FNLE 460
¢ * USER) THAT DEFINES EITHER ® FNLE 49
(of . {A) THE DEPENDENY VARIARLES (Na = () * FNLE %97
C b 0R (B) THE DFRIVATIVES OF TME DEPENDENY VARIARBLES * FNLE 463
C b {NA ,NE, 0) ® FN,E 4G
C ® NA = THE FLAG THAT INDICATES THE NATURE OF SUBROUTINE ® FNLE oG5
o . ROME (SEE PREVIOQUS ARGUMENT) ® FNLE 4S5k
C A NR = @ IF ARGUMENTS ALFL AND HATA BELOW ARE NOT TO BE w ENLF 497
c o COMPUTED & FNLE won
C ° w | IF ALFA AND BATA ARE TO RE COMPUTED ® FNLE UG
C A N1l = NUMRER OF MEASURED DEPENDENT VARIABLES (N1.GE.1) ® ENLE 500
c * N2 = TOTAL NUMBER OF DEPENDFENT VARIABLES (N2.GE4N]) ® FNLE 501
C » N23 = TOTAL NUMBER OF PARAMETERS AND INITIAL CONDITIONS ® FNLE Sue
C » (NZB.GE.NZ) * ENLE 593
C o N& = NUMBER OF MEASIREMENTS TAKEN ON E&CH OF THE NI ® FNLE SCe
C - MEASURED VARIABLES . ® FNLE &ane
C » C = VECTOR OF THE N2 IMITIAL CONDITION ESTIMATES ® FN_E &rs
o b CF = VECTOR OF THWE N2 INITIAL CONDITIuUN FLAGS ® FN_E &807
C * (0. IF THE INITIAL COVDITION VALUE 1S FIXED) ® FN_FE =0k
c ® P = VECTOR OF THE N3 PARAMETER VALUES ® FNLF 57 7%
C * PF = VECTOR OF THE N3 PARAMETER FLAGS ® FNLE 610
C » (0s IF THE PARMMETER VALUC 1S FIXED) & FNLE 511
C * W s VECTOR OF THE N]1 BY N4 WEIGHTS ASSOCIATED wWITH INPUT ® ENE S5i-
C - Yd DEFINED BELOW ® FNLE 81
c . XA & THE REFERENCE X VALUE A7 oHICH INITIAL CONDiTIONS ® FNLE 216
C . APPLY LA VTEUEEEN
c - X = VECTOR OF THME Na& VALUES OF THE INDEPENDENY VARIABLE * FNLE Aw
o ol AT WHICH MEASUREMENTS WERE TAKEN ® FNLI 817
C L4 YM = VECTOR OF THE N] BY N& MEASURED Y VALUES FOR ONE ® FNLE Rk
') ROUNDe WHERE ® FNLF RTY
C L YM(IM) = MEASURED VALUE OF Y (1) AT X (M) ® FNE RS
C hd IM a1 o (M=])eN] ® FN_E 2o
C . 1 = 1e2¢ see NI e FN_F 20,
c . M B 1e2) ses N& & FN_E NP3
C ® s ENLE 354
C . QUTPUT ARGUMENTS oo, & FN_E 2o
Cc . YC & VFCTOR OF NZ RY N6 COMPUTED Y VALJUES FOR ONE ROUND» & FNLE 52+
c ° wWHF RE * FNLE &7
C . YC(JM) = COMPLUTED VALUST OF Y(Ju) AT XiM) ® FNLE RSPk
c L4 JM B) e (Me]) N2 ® ENLE Hovw
C - J o 1920 oces N? e FNLE 830
C . R = VECTOR OF Nl BY NA RESIOUALSe WHENE e FNLF &7
C g R(IM) = YM(IM) ~ YCiIM2), ® FNLE S,
ol L IMD2 & 1 + (M=]1)%N2 * FyLF 5 13
C L RSQ = VFCTOWR OF N1 FRRAOR MEASURES, WHERE *® FNLE S
C . RSO(T) = WEIGHTED SUM OF THWF SQUARES OF TRE RESTIDUALS® FNLE 538
C . IN THE [~YH DEPENDFNT VvARIASLE * FNLE Rk
C . ALFA = VECTOR OF N2 BY N23 ALPHA VALUES,y WhIRE * FNLE 577
c . ALFAINK) = ALPHA{NyX) ® CNLE 34N

85

OO0 0D

oNaEsNaNeNeoReNaeNeNeNasNoNeNeoNeNo e e ReNe R Re

[aNeEeSa e Nele NeNaNeoNaNale)

s Nl

* * % & & 9 8

1

X & & & 8 3 & 9T T T RO * S S X %O

¢ & % 90 2 0 & %9 O

L K TN BN Y S BN JEE IR K T R 2 B B B B NN I 2N 2NE NN JEE BN BN NEE SN BN REE BN BN

NK % N ¢ (K-])*N2]3
BATA = VECTOR OF N23 BETA VALUES
IR =] IF A WARNING WAS PRINTED ANO A RETURN EXECUTED
BEFORE OBTAINING THE ABOVE OUuTPYT
s 0 OTHERWISE

DIMENSION C{1)oCF (LI 0P (1) ePF{L)oX (1) oVYM{LI)oYCUL)oR(E)RSQ(L)

ALFA{L) +BATAC(L) 4w (])

DIMENSION U(400)sDU(S00) +S(10000)

CINE JEE ZEN TN JEE NEY BEE IR K B 2 BN T B Y I NN JEE 2K RN JEEBEK JEN IR SN JEE BN IR NN I 2R)

® & & © # & & ¥ & & & 2 0 @ O 00 B 00N 66 8 3 > 200

WARNING ,., THE DIMENSIONS OF U AND DU ABOVE MUST EQUAL
OR EXCEED NS = N®# (1eN23):s THE NUMBER 0F EQUATIO
IN SUSROUTINE ROME, THE DIMENSION OF ARRAY S
ABOVE MUST EQUAL OR EXCEED New®NS, FOR EACH VAL
7 THE INDEPENDENT VARIABLE X,

U SURSCRIPTS.., DENOTE THE COMPUTED VALUES OF .,
192eces N2 THE N2 DEPENDENT VvARIABLES
N2¢leaas NS THE N2%N23 PARTYIAL DERIVATIVES. wHE

PARTIAL(JeX) ® U(JeK®ENZ)

ARRAY DU DENOTES DuU/DX. ARRAY S IS A COMPILATIO
OF ALL THE U VALUES. THaT IS,

S(1)9,0eS(NS) B U(l)yaesUINS) AT X(1)
SINS*1) 1eesS(29N5) ® U(l) e J(NS) AT X(2)y ETC.

COMMON /NAPLESY PAR(40)VFLAG(60)

® & 8 & & 4 P & & & % B a6 O 0 N 6 e 0000 x e 0 s as

TeF AROVF LABELLED COMMON MyUST BE LINKED TGO AND USED IN TH
USERYS SUBROUTINE ROME, THE VALUES ARE ESTAQLISHED HERE IN
SUBROUTINE PARIS,
PAR = THF ARRAY OF N3] PARAMETER VALUES
FLLAG = THE ARRAY OF N23 FLA3S FOR A GIVEN ROUMD. «HERE
FLAG(K) = K=TH INITIAL CONDITION Fi AGBs K 3]42¢4eN
FLAGIK*ND) z= KaoTH PRIAIAMETER FLAOGs X ® 1¢200eN3

O 8 & & B % 8 u @ & € 9 » e & 0 6 & & 8 86 2 E 8O " s 2N e

EXTERNAL ROME
DATa HMIN.O.DELX/’XUO' « 00010y ,125/

PART (1) PRELIMINARIES

IR

= 0

M2 = NP3

Ml
M2
Ma
s
1F

s N}

8 v

s Né&

x M2® (] eM23)

(M& 1 E, &00) H0T0 2
IR =)

86

e A b skl

FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNMLE
FNLE
FNLE
FNLE
ENLE
FhLE
FNLE
FNLE
FNLE
FALE
FNLUE
FNLE
FyLE
Faiy
FNLE
FNLE
FNLE
ENLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
“NLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNnLE
FNLE
FNLE
FNLF
ENCE
FNLE
FNLE
FNLE
FyLE
FNLE
FNLE
FYLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FuLE
FNLF

* &€ 2 %3 8

NS

UVE

RE

N

L N B B BN BE B NE BE BE B AN B I N N Y

[3

]

® @& ¢ ¢ % ¢ 50 S SO

5139
Qa0
561
S542
e,
544
S54%
546
547
S4H
549
550
551
552
583
5%4
555
586
567
558
569
560
5kl
S62
563
564
565
566
367
S68
569
570
S7Ti3
572
573
576
RRAY
STs
577
57K
<79
55X
SR}
SM4p
5813
Y584
585
586
587
CLE
5R9
590
591
5027
593
594
86%
H96
597
59 x

Ahdasn amnnt il o et elbieaaliads ekl

PRINT 10 FNLE 5y

1¢ FORMAT (1HOo* SUBROUTINE PARIS WARNING .04 7) FNLE 400

PRINY 22:M5S FNLE /01

2e FORMAT (LN 910X, INCREASE DIMENSIONS OF U AND DU (AND IN SUBROUENLE s02

1TINE MERSOs INCREASE DIMENSIONS OF Ty G AND S) 7O ',15) FNLE »03

24 ME m MAWME FNLE %06

I¥ (M6 LLE. 10000) GOTO 28 FNLE 695

IR =) ENLE 60h

PRINT 10 FNLE 607

PRINT 260¢M3 FNLE #08

26 FORMAT(1H +10X,? INCREASE DIMENSION OF S TO *,19) FNLE 609

28 CONTINULE FNLE 610

IF (IR LEQ. 1) RETURN FNLE 611

IM = 0 FNLE #®1¢

H = DELX® (X(M&)~Ail))/FLOAT(M4=]) FNLE 1%

JA = M2 +] FNLE 514

DO 30 UB a JA.HS FYLE 81%

aE UtJl) = 0,0 FNLE 616
S pu(Jg) = 0,0 FNLE w17
S 30 CONTINUE FNLE 618
. DO 32 K = 14M2 FNLE 61y
S FLAG(K) = CF (K} FNLE %20
o 32 CONTINUE FNLE 621
; M3 ® M23 « M2 FNLE w2P
1 DO 36 K = 14M3 FNLE 623
SR PAR(K) = P(K) FNLE 626
KA 8 K ¢ M2 FNLE 625

FLAG(KA) = PF(K) FNLE 676

34 CONTINUE FNLE 527

C FNLE %78

C #%e PART (2) DETERMINE K = NO, OF POINTS IN X LESS THAN XA FNLE 629

Cc AND KR = NO, OF POINTS IN X GREATER THAN XA, FNLE &30

o IF XA COINCIDES WITH A POINT IN Xy¢ THEN THE COMPUTED' FNLE 6731

C Y VALUES AT THAT POINT ARE THE INITIAL CONDITIONS FROM FNLE k37

c SURROUTINE RONN, ENLE 6133

C FNLE 634

DO &40 M =),44 FNLE &13-

IF (XA=X(M)) T0e50,40 FNLE - 48

40 CONTINUE FNLE 37

KL = Mé FNLE $73H

KR = 0 FNLE %139

GOYTO 80 FNLE 6e)

SC KL s M =] FNLE ko)

KR = M4 - M FNLE 547

IM =) FNLE %43

CALL BONN(M2,M§54CsU) FNLE baew

LB = KL®MS FNLE #a5

NO 60 L s 14MS FNLE sa6

LB = (9 « 1 FNLE &4

S(LY) = UL} FNLE +aR

60 CONTINUE FNLE &49

GOYTO a0 FNLE &850

TC ML = M ~ } FNLT 85)

KR = M& = K| FNLE /&

c FNLE 657

C e®e PART (3 FOR EACH POINT IN X, SOLVE THE SYSTEM OF EQUATIONS FNUE &84

C DEFINED IN SURACUTINE ROME TO QATALI™ COMPUTED Y VALUFS,SNLF 655

C THESE Y VALUES ARE STORED IN S, FNLE K84

A0 CONTINUE FNLE By !

‘r:'

AT OSBRI BN b e

[eNeNe!

.
L)
e ReXe]

0

100

120

* &

130

140
150

L2 X]

160

170

T AT YTNA s PR/

o 10 R L 4 P 3 4

iA = =1 FNLE
IB = 0 FNLE
LE = KL FNLE
6GOTI 10 FNLE
14 =) FNLE
IR 2 M4 + 1} FNLE
LK x IR « KR FNLE
X} = XA& FNLE
IF (IM ,EQ, 0) CALL BONN{M2,M5,CsVU) FNLE
IM z § FNLE
® X'LK) FNLE

a (N‘ oNE. 0) GOTQ 11‘ FNLE
CALL ROME(CyX1aXEpU) FNLE
BGOTO 116 FNLE
CONTINUE : ENLE
HA = DELA®ARS({Xe2=X1) FNLE
HB = ABS (W) FNLE
H = AMIN] (HA,HR) FNLE
CALL MERSO (ROMEwIMSeh1eX2sUsDUsHyHMINIQ) FNLE
CONTINDIE FNLE
LE = (LK=])®#MS FNLE
DO 120 L = 14MS FNLE
LB = LB +] FNLE
S(LB) = U(L) FNLE
CONTINUE FNLE
LK = LK « 1A FNLE
IF (LK NE, IB) GOTO 110 FNLE
IF (IA .EQ., 1) GOTO 130 FNLE
IF (KR NE. ©0) GOTO 90 FNLE
FNLE

PART (&) CONVERT VECTOR S TO VECTOR YC AND FORM THE RESIDUAL FNLE
VECTOR R, FNLE

CONT INUE FNLE
DO 15%0 M = 1.Ma FNLE
NR = (M=1)4M] FNLE

NY = (M-1)®M2 FNLE

LA = (M-1)#M5 FNLE

DO 140 J = M2 FNLE

IM 3 NR + U FNLE

JM o NY e FNLE

LR = LA + J FNLE

YC(JM) = S(L8B) FNLE

IF (U oLE. Ml JAND, W(IM) NE, 0,) R(IM) = YM(IM) = YC(JUM}FNLE

IF (J +LEe M1 ,anD, W{IM) LEQ, 0.) R(IM) = O, FNLE

CONT INUE FNLE
CONTINUF FNLE
FNLE

PART (5) COMPUTE VECTOR RSQ FNLE
FNLE

DO 170 1 = 1eM] FNLE
R™M = 0,0 FNLE

NO 160 M =]| oMa FNLE

IM =] ¢ (M=]1)emM} FNLE

Fim = RM ¢ W([M)eR([M)®e; FNLE

CONT INUE FNLE
RSQ(Y) = R™ FNLE
CONT INUF FNLE
IF iINR (En, 0) REITURN FNILE
Fnt s

PART (6) COMPUTE VECTOR ALEA FNUE

88

§RG
660
LY-91
662
663
LY
665
66
667
he8
6569
&T0
671
672
673
674
675
676
677
678
579
680
581
687
6R3
68¢
585
686
AR7
684
686
690
691
692
693
694
695
£96
697
698
599
7606
701
702
703
T04
708
706
7C7
708
709
710
711
712
713
Tlé
715
715
T17
718

FNLE 719

DO 210 K =]¢M23 FNLE 720

LA = K®M2 FNLE 721

NL = (Kel)®*M23 FNLE 722

D0 200 N = KyM23 FNLE 723

LB = N®*M2 FNLE 776

NK @ NL ¢ N FNLE 725

ALFA(NK) = 0.0 FNLE 726

DO 190 I = 1eM]} FNLE 727

ALF = 0,0 FNLE 728

LC = LA ¢ 1 FNLE 7729

LD =« LB ¢+ I FNLE 730

DO 180 M =] Mé FNLE 731

IM = I o (M=]1)#M] FNLE 732

ALF = ALF « W(IM)®S(LC)*S(LD) FNLE 733

LC = LC » M5 FNLE 736

LD = LD + MS§ FNLE 735

180 CONT INUE FNLE 736

ALFA(NK) = ALFA(NK) + ALF FNLE 737

190 CONTINUE _ FNLE 738

IF (N EQ. K) GOTO 200 FNLE 739

KN = K ¢ (N=1)#M23 FNLE 740

ALFA(KN) = ALFA(NK) FNLE Tel

200 CONTINUE FNLE T4?

210 CONTINUE FNLE 763

FNLE Tueo

*s® PART (7) COMPUTE VECTOR BATA FNLE 745

FNLE T4k

DO 240 N = 1,M23 FNLE 767

: LA & N®#M2 FNLE Te8

- RATA(N) = (0.0 FNLE 749
| PO 230 I = 1M} FNLE 750
¥ BAT = 0,0 FNLE 751
¥ R o= LA + I FNLE 752
3 DO 220 M = loMs FNLE 753
3 IM 5 1 + (M=]1)em} FNLE 754
L BAT = BAT + W(IM)®R(IMI*S(LB) FNLE 7685
f;: LR x LB ¢ MS FNLE 756
. 220 CONT INUE FNLE 757
i BATA(N) = BATA(N) + BAT FNLE 758
§ - 230 CONT INUE FNLE 759
B 240 CONTINUE FNLE 760
' RE TURN FNLE Ts)
' END FNLE 782
‘ c FNLE 763
C v = o w & ¢ = @ ¢ «w = « = - - e e = e e e - - - w e e e e O & = - - Teoa

¢ FNLE 765

SURROUTINE RONN(NZ¢NSsCeU) FNLE 766

(of FNLE 76T

C '.0.QO..&.“Q0..0...QO..‘C....O.QQQF’NLE7'.,5‘)

c L * FNLE Tho

cC » THIS SUBRGUTINE (CALLED BY SUBROUTINE PARIS) ASSIGNS INITIAL ® ki f 77n

c o CONDITIONS (THE VALUES AT X = XA} TO VECTOR U. FOR THE « FEN_r 7T

c » DEFINITIONS OF THE ARGUMENTS, SEE THE COMMENTS IN SUBROUTIME ® FNLE Y. -

c » FARIS, * FNLE 73

C @ ® FNLE TT6

C .OI'QI.".’Q“‘Q....QQQOOQDQOQOQQOQCFQ\F77&

C FNLE 776

DIMENSION C(N2) otLi(NS) ENLE Y77

M2 m NP2 FNLE 77w

89

10

100
110
200

410
411
420
450
501
503
504
510

520

M5 = NS

DO 10 J = 1eMP
UiJgl) = C(J)

CONTINUE

LA = 0

DO 30 JA =] M2
LA = LA + M2
DO 20 JB = 1eM2

LB = LA + UB
IF (JA (EQ, JB) U(LB) = 1,0
IF (JA JNE, JB) U(LB) = 0,0

CONTY INUE
CONTINUE

IF (LR

+GE. M5) GOTO 50

LA = LB +]

DO 40 LB = LAWMS
U(LR) = 0,0

CONTINUE

CONTINUE

RETURN
END

SURROUTIME MFRSO

DIMENSI

IF (HMI,

BC‘—“OQO.LT.ET.AND.ET! LTOIOO $ ES-ET.SOD

Y O e gy e W M e W B me G M W e B W W@ Y W W o

(FUNCyNyXsZsYsFoHsHUINGE)

ON Y(1}4F (1) § DIMENSION T(AQ0) ¢+G(400)¢S(400)
LOGICAL BC+BE+RHsBReBX § NTaNS 2Ta2S HMI=HMINS ET=ABS(F)
LT.0.0)HMI=0,01*ARS(H) § BH=BRu=AX=,TRUE,

IF((ZT-GTQXOAND.HULT.OOO)OOR. (ZTILTQXOAND.H.GT.OOO))H'-H

IF (NTLLE,400)GOTNL00% PRINT 1eNTS STOP

FORMAT ¢
XS=X %

224 RUN ERRORs MERSONe Nuyl110)
DO 110 JU=1sNT $ GlU)=Y ()

CONT INUE

HS=HS QuX+H=-ZT$ "E=,TRUE,
IF((QaLTeDa00ANDeHoGE040) sOR(QaBT40,0,ANDHLELO.0)) GO TO 210
HxZT=X$% RR=.FALSE,
H3=H/34.0 $ 00 510 ISW=1,5 8 CALL FUNC(NToXeYsF) § DO 450 Is]leNT

Q=H3*F (118 GOTO(301,302+303+3044+305),1SW

T(I)=R=Qs GOTO 400

R=D,5%{(

Q+T(I1))8 GOTO 400

S(1)=R=3,0%Q% R=0,3I75*(R<T(I))S GO TO 400
T(I)sR=T(1)+4,0%Q% R=] S« (R=S([})8 GO TO 400
Rz0N,5*(QeT(1))$ Q=ARS(2,0%R~1,5%(Q+S(1)))

Y{I)=6G{
IF(AaRS(

IF(LQ,LT.R) e OR,«NOT.BX)GOTO 420 $ BRu,TRUE.S BrHs,FALSE,S Hm0,5®H

IYeR % IF(ISW.NE,S) GO TO 450 $ IF(.NGT.RBCIGOTO 450 $ RefFS

Y(1))aBE.0,001) RuR®ABS(Y (1))

IF(ARS (M) ,GEHMIIGOTO 410 $ MsSIGN] {H) *HMIS BX=s,FALSE,

DO w1}

JEIeNT & Y1) =G (J)

CONYINUF ¢ X=xXS$ GOVYO 200
IF(Q.GEL0,03125%R)BESFALSE,

CONTINUF

XxX+H3$ GOTO K190

XxX+0,35%H3% G010 S10

XxXe(, G0

CONTINUE & TF(NOT.RC) GO TO 521

IF {.NOT . (RFJANDRBHAND ,BR)) 60 TO - 29
AHx, TRUE,

1F (RR)

GO YO 100 % H=rSS RETURN $ END

90

% GOTO(S501+51045034504¢510) 415w

s

H=2,0%4 & 8Xm,TRUE,

FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE
FNLE

779
THO
TR1
782
7R3
784
785
TA&
787
788
789
790
791
792
793
7194
T95
196
797
738
799
300
801
802
803
ROG
805
806
ROY
808
809
810
811
812
813
A4
815
816
817
81Rr
Al9
B20
821
8e?
823
B2s
825
826
ae7
a2a
82¢%
830
131
R3?
A33
836
8365
A364
R37

i -
e e B TSI T IO TR W ey oy R Ty ey e o

SUBROUTINE MATINV

OBTAINED FROM COMPUTER SUPPORY DIVISION
ABERDEEN RESEARCH AND DEVELOPMENT CEWTER

SUBROUTINE MATINVIA NsCoNMAR,KoDET) LT L
CIMENSICON AINMEX,1),CH1) HATINV 2
NN = N NMATINY 3
KK = K MATIMNY &
IF (1-KK) 3,1,1 MATINV 5

1 N3 = NN MATINY 6
IF (KK) 2y4&,2 MATINV 7

2 ASSIGN 9@ TO NS MATINV &
ASSIGN 13 TU N7 MATINV 9
GGT0 5 MATINVIO

I NI = KK ¢ NN - 1 MATINVLI
4 ASSIGN 1C TO NS MATINV]Z
ASSIGN 14 TO N7 MATINV] 3

S DEY = 1,0 MATINVILL
DO 15 1 = 1,NN MATEINVLE
IF (AT,1)) T746,7 MATINVLG

6 WRITE(6,17) MATIMVYT
PET = Q.0 MATINVIA

GOTO 16 MATINVEY

7 Tl = 1.0/A(1,1) MAT INVZ20
CET = DET=A{I,1]) MATINV21
A(L,1) = 1,0 MATINY22

CO 8 J =],N2 MATINVZ23
Ally,J) = A(L,J)sT]) MATINV?4

8 CONTYINUE MATINVZ25S
GOTO NS5, (9,10} MATINVZ26

9 Cil) = Ctliem) MATINV27
10 DO 14 J = 1 ,NN MATINV?2SE
IF (I-J) 11l,14,11 MAT INV2S

11 Tl = A{J,1) MAYTINY30
AlJ,1) = 0,0 MATINV3

CO 12 L = [,N3 MATINV32

AfJdelL) = A{JyL) = TleAall, L) MATINV32

12 CONTINUE MATINV24
GOTO N7, (13,14} KATINVYS

13 ClJ)Y = ClJ) = T1eC (1) MAT TN
14 CONTINUE MATINVAT
15 CONTVTINUE MATINV3R
16 REYURNM MAT [NV3Y
17 FCAMAT (16H SINGULAR MATYRIX)} MATINVAD
MATINVAGL

END

9l

1

-~
&~

s

DISTRIBUTION LIST

E N No. of
JETNY Copies

Organization

Commander

Defense Technical Info Center
ATTN: DDC-DDA

Cameron Station

Alexandria, VA 22314

Commander

US Army Materiel Develcpment
and Readiness Command

ATTN: DRCDMD-ST

5001 Eisenhower Avenue

Alexandria, VA 22333

Communder

US Army Armament Research and
Development Command

ATTN: DRDAR-TSS (2 cys)

Dover, NJ 07801

Commander
US Army Armament Research and
Development Command
ATTN: DRDAR-LCA,
Mr. W. R,
DRDAR-LCA-F,
Mr. A. Loeb
DRDAR-LCA-FA,
Mr. E. Friedman
Mr. D. Mertz
07801

Benson

Dover, NI

Commander

11S Army Armament Rescarch and
Development Command

ATTN: DRDAR-LCN,
Mr. F. Saxe
Mr. F. Scerbo
Dover, NJ 07801

Commander

US Army Armament Research and
Development Command

ATTN: LRDAR-LCU, Mr,

Dover, NI 07501

A. Moss

93

No. of
CoEies Organizggigg
1 Commander

US Army Armament Materiel
Readiness Command

ATTIN: DRSAR-LEP-L, Tech Lib

Rock Island, IL 61299

Director

US Army Armament Research and
Development Command

Benet Weapons Laboratory

ATTN: DRDAR-I.CB-TL
Watervliiet, NY 12189
Commander

US Army Aviation Research
and Development Command

ATTN: DRSAV-E

P.0. Box 20S

St. lLouis, MO 61366

Director

US Army Air Mobility Research
and Development Laboratory

Ames Research Center

Moffett Field, CA 94035

Commander

US Army Communications Research
and Development Command

ATTN: DRDCO-PPA-SA

Fort Monmouth, NJ 07703

Commander

US Army dclectronics Resecarch
and Development Command

Technicul Support Activity

ATTN: DELSD-L

Fort Monmoutn, NJ 07703

Commander

US Army Missile Command

ATTN: DRSMI-R

Redstone Arszenal, AL 35809

FRECRDING PAGE BLANK-MOT Tl 03D

rrrr

DISTRIBUTION LIST (continued)

ST TSR, END AT v TR ERTHETR o

' 3
5
&
t

No. of No. of
Copies Organization Copies Organization
1 Commander 2 Director

US Army Missile Command
ATTN: DRSMI-YDL
Redstone Arsenal, AL 35809

Conmander

US Army Tank Automotive
Research and Development
Command

ATTN: DRDTA-UL

Warren, MI 48090

Director

US Army TRADOC Systems
Analysis Activity

ATTN: ATAA-SL, Tech Lib
Yhite Sands Missile Range
NM 88002

Ccmmander
US Army Yuma Proving Ground
ATTN: STEYP-TMW,

Mr. W. T. Vomocil
Yuma, AZ 85364

Commander

S Army Research Office
ATTN: CRD-AA-EH

F.0. Box 12211

Rescarch Triangle Park
NG 27709

AFATL ‘Tech Lib)
Eolin AFB, 1. 32542

AFFDL
Wright-Patterson AFB,
O 45333

Director
National Acronautics and
Space Administration

Ames Rescearch Center
ATTN: Dr. Gary Chapman

Mr. AL Seiff

Mr. Murray Tobak

fech Lih
Moftetr Field, CA 94035

94

Jet Propulsion Laboratory
ATTN: Tech Lib

Mr. Peter Joffe
4800 Oak Grove Drive
Pasadena, CA 91103

Commander

David W. Taylor Naval Ship
Research and Develonment
Center

ATTN: Tecn Lib

Bethesda, MD 20084

Commander

Naval Research Laboratory
ATTN: Tech Info Div
Washington, D.C. 20375

Commander
Naval Surface Weapons Center
ATTN: Dr. Thomas Clare

br. W.R. Chadwick

br. W.G. Soper

Dr. F. Moore

Dr. T.R. Pepitonc
Dahlgren, VA 22448

Commander

Naval Surtace Weapons Center
ATTN: Code 730, Tech Lib
Silver Spring, MD 20910

Commander

Naval Weapons Center
ATIND Coae 233

China Lake, CA 935585

Arnold Rescarch Organiration,
Inc.

Project Support and Special
Studies Section

Aerodyvnamics Division

Projects Branch

ATTIN: Dr. Jdohp O Adams, Jr.

Arnold AFS, TN 3738D

»

"

DISTRIBUTION LIST (continued)

No., of No. of
Copies Organization Copies Organpization
2 Director 1 Oceanics, Inc.
Sandia Laboratories ATTN: Dr. Theodore R. Goodman
ATTN: Division 1331, Technical Industrial Park
, Mr, H.R. Vaughn Plainview, NY 11803
| S Mr. A.E. Hodapp, Jr.
. k Albugquerque, NV 87115 1 Schering Corporation
LS ATTN: M, Miller
. . - 1 Director 60 Orange Strect
s E Nationa! Aercnautics and Blcomfield, NJ 07003
’ Space Admiristration
. , George C. Marshall Space 1 Systems Technology, Inc,
x-;.'; Flight Center ATTN: Arlene Muise, Librarian
_ : ATTN: MS-I, Library 13766 South Hawthorne Blvd.
- Huntsville, AL 35812 Hawthorne, CA 90250
- 2 Director 1 union Research Center
| National Aeronautics and ATTN: Dr. M. A. Sclim
’. Space Administration P.0. Box 76
' ¥ Langley Research Center Brea, CA 92621
g ATTN: MS-185, Tech Lib
X Dr. Clarence Young 1 Case Western Rescerve
. S Langley Station University
¥] Hampton, VA 23365 ATTN: Professor Philip R
. Bevington
.»{~; ; 1 The Analytic Sciences Cleveland, OH 44106
‘f:;v 1 Corporation (TASC)
] ATTN: Mr. James E. Kai: 1 OKklahoma State University
- J 6 Jacob Way Computing and Information
| Reading, MA 01867 Sciences
| J ATTN: 0. P, Chandler
;' 1 E.I. du Pont de Nemours and Stillwater, OK 740741
. Company
ingincering Department 1 University of Virginia
| . = ATTN: Dr. Donald W. Marquardt Department f Unpgipecring
" S Wilmington DE 19898 Science
e ATTN: Professor ira Jacobwon
| ‘ 1 Exxon Research Center Thornton Hall
3 0o AVIN: Mr. John Steven: Charlottesville, VA 22001
. S Bailding 28 ,
= ‘. PO Box 15 .f\l)‘c;l'i_lrc‘(l_x’l .L‘r\()\.'nu: Groand
Linden, NJ 07036 i, TSRS

ATIN. DRASY -y
DRASY 0 1 Cofon
A, UsSATL ooy
VEIN DRS00
e, USACSE L BIde. 1 ande, 1y
VEEN S DRDAR (iR

'- S 1 teneral blectric Company

| A Armament Systems Department
AT'IN: Mr, Robert N, Whyte
Lakeside Avenue

Burlingron, VI 05101

e

I3
i
i

USER EVALUATION OF REPORT

Pleasc take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and placce
in the mail. Your comments will provide us with information for
improving future reports.

1. BRL Rzport Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being us2d? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in thils report led to any quantitative
savings as far as man-hours/contract doliars saved, operating costs
avoidcd, efficiencies achieved, etc.? 1f so, please elaborate,

5. General Comments (Indicate what vou think should be chunped to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, cte.

6. 1f you would like to be contacted by the personnel who prepared
this report to raise spectfic quest.ons or discuss the topic,
please fill in the following intformation.

Name :

Telephone Number:

Organization Address:

